1887

Abstract

The mechanism by which -nicotine is taken up by bacteria that are able to grow on it is unknown. Nicotine degradation by , a Gram-positive soil bacterium, is linked to the presence of the catabolic megaplasmid pAO1. -[C]Nicotine uptake assays with showed transport of nicotine across the cell membrane to be energy-independent and saturable with a of 6.2±0.1 μM and a of 0.70±0.08 μmol min (mg protein). This is in accord with a mechanism of facilitated diffusion, driven by the nicotine concentration gradient. Nicotine uptake was coupled to its intracellular degradation, and an strain unable to degrade nicotine (pAO1) showed no nicotine import. However, when the nicotine dehydrogenase genes were expressed in this strain, import of -[C]nicotine took place. pAO1 and were also unable to import 6-hydroxy--nicotine, but expression of the 6-hydroxy--nicotine oxidase gene allowed both bacteria to take up this compound. -Nicotine uptake was inhibited by -nicotine, 6-hydroxy--nicotine and 2-amino--nicotine, which may indicate transport of these nicotine derivatives by a common permease. Attempts to correlate nicotine uptake with pAO1 genes possessing similarity to amino acid transporters failed. In contrast to the situation at the blood–brain barrier, nicotine transport across the cell membrane by these bacteria was not by passive diffusion or active transport but by facilitated diffusion.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.028688-0
2009-06-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/6/1866.html?itemId=/content/journal/micro/10.1099/mic.0.028688-0&mimeType=html&fmt=ahah

References

  1. Allen, D. D., Lockman, P. R., Roder, K. E., Dwoskin, L. P. & Crooks, P. A. ( 2003; ). Active transport of high-affinity choline and nicotine analogs into the central nervous system by the blood–brain barrier choline transporter. J Pharmacol Exp Ther 304, 1268–1274.
    [Google Scholar]
  2. Andreesen, J. R. & Fetzner, S. ( 2002; ). The molybdenum-containing hydroxylases of nicotinate, isonicotinate, and nicotine. Met Ions Biol Syst 39, 405–430.
    [Google Scholar]
  3. Armstrong, D. W., Wang, X., Lee, J.-T. & Liu, Y.-S. ( 1999; ). Enantiomeric composition of nornicotine, anatabine, and anabasine in tobacco. Chirality 11, 82–84.[CrossRef]
    [Google Scholar]
  4. Baitsch, D., Sandu, C., Brandsch, R. & Igloi, G. L. ( 2001; ). Gene cluster on pAO1 of Arthrobacter nicotinovorans involved in degradation of the plant alkaloid nicotine: cloning, purification, and characterization of 2,6-dihydroxypyridine 3-hydroxylase. J Bacteriol 183, 5262–5267.[CrossRef]
    [Google Scholar]
  5. Berthold, H., Scanarini, M., Abney, C. C., Frorath, B. & Northemann, W. ( 1992; ). Purification of recombinant antigenic epitopes of the human 68-kDa (U1) ribonucleoprotein antigen using the expression system pH6EX3 followed by metal chelating affinity chromatography. Protein Expr Purif 3, 50–56.[CrossRef]
    [Google Scholar]
  6. Brandsch, R. ( 2006; ). Microbiology and biochemistry of nicotine degradation. Appl Microbiol Biotechnol 69, 493–498.[CrossRef]
    [Google Scholar]
  7. Brandsch, R. & Bichler, V. ( 1991; ). Autoflavinylation of apo6-hydroxy-d-nicotine oxidase. J Biol Chem 266, 19056–19062.
    [Google Scholar]
  8. Brühmüller, M., Möhler, H. & Decker, K. ( 1972; ). Covalently bound flavin in d-6-hydroxynicotine oxidase from Arthrobacter oxidans. Purification and properties of d-6-hydroxynicotine oxidase. Eur J Biochem 29, 143–151.[CrossRef]
    [Google Scholar]
  9. Brühmüller, M., Schimz, A., Messmer, L. & Decker, K. ( 1975; ). Covalently bound FAD in d-6-hydroxynicotine oxidase. Immunological studies of d- and l-6-hydroxynicotine oxidase: evidence for a d-enzyme precursor. J Biol Chem 250, 7747–7751.
    [Google Scholar]
  10. Burkovski, A. & Krämer, R. ( 2002; ). Bacterial amino acid transport proteins: occurence, functions, and significance for biotechnological applications. Appl Microbiol Biotechnol 58, 265–274.[CrossRef]
    [Google Scholar]
  11. Chiribau, C.-B., Sandu, C., Fraaije, M., Schiltz, E. & Brandsch, R. ( 2004; ). A novel γ-N-methylaminobutyrate demethylating oxidase involved in catabolism of the tobacco alkaloid nicotine by Arthrobacter nicotinovorans pAO1. Eur J Biochem 271, 4677–4684.[CrossRef]
    [Google Scholar]
  12. Chiribau, C.-B., Mihasan, M., Ganas, P., Igloi, G. L., Artenie, V. & Brandsch, R. ( 2006; ). Final steps in the catabolism of nicotine. Deamination versus demethylation of γ-N-methylaminobutyrate. FEBS J 273, 1528–1536.[CrossRef]
    [Google Scholar]
  13. Crooks, P. A., Li, M. & Dwoskin, L. P. ( 1997; ). Metabolites of nicotine in rat brain after peripheral nicotine administration. Drug Metab Dispos 25, 47–54.
    [Google Scholar]
  14. Ganas, P., Mihasan, M., Igloi, G. L. & Brandsch, R. ( 2007; ). A two-component small multidrug resistance pump functions as a metabolic valve during nicotine catabolism by Arthrobacter nicotinovorans. Microbiology 153, 1546–1555.[CrossRef]
    [Google Scholar]
  15. Ganas, P., Sachelaru, P., Mihasan, M., Igloi, G. L. & Brandsch, R. ( 2008; ). Two closely related pathways of nicotine catabolism in Arthrobacter nicotinovorans and Nocardioides sp. strain JS614. Arch Microbiol 189, 511–517.[CrossRef]
    [Google Scholar]
  16. Gartemann, K. H. & Eichenlaub, R. ( 2001; ). Isolation and characterization of IS1409, an insertion element of 4-chlorobenzoate-degrading Arthrobacter sp. strain TM1, and development of a system for transposon mutagenesis. J Bacteriol 183, 3729–3736.[CrossRef]
    [Google Scholar]
  17. Gloger, M. & Decker, K. ( 1969; ). Zum Mechanismus der Induktion nicotinabbauender Enzyme in Arthrobacter oxydans. Z Naturforsch 24b, 1016–1025.
    [Google Scholar]
  18. Grether-Beck, S., Igloi, G., Pust, S., Schilz, E., Decker, K. & Brandsch, R. ( 1994; ). Structural analysis and molybdenum-dependent expression of the pAO1-encoded nicotine dehydrogenase genes of Arthrobacter nicotinovorans. Mol Microbiol 13, 929–936.[CrossRef]
    [Google Scholar]
  19. Hearn, E. M., Dennis, J. J., Gray, M. R. & Foght, J. M. ( 2003; ). Identification and characterization of the emhABC efflux system for polycyclic aromatic hydrocarbons in Pseudomonas fluorescens cLP6a. J Bacteriol 185, 6233–6240.[CrossRef]
    [Google Scholar]
  20. Igloi, G. L. & Brandsch, R. ( 2003; ). Sequence of the 165-kilobase catabolic plasmid pAO1 from Arthrobacter nicotinovorans and identification of a pAO1-dependent nicotine uptake system. J Bacteriol 185, 1976–1989.[CrossRef]
    [Google Scholar]
  21. Kahng, H.-Y., Byrne, A. M., Olsen, R. H. & Kukor, J. J. ( 2000; ). Characterization and role of tbuX in utilization of toluene by Ralstonia picketti PKO1. J Bacteriol 182, 1232–1242.[CrossRef]
    [Google Scholar]
  22. Kasai, Y., Inoue, J. & Harayama, S. ( 2001; ). The Tol plasmid pWW0 xylN gene product from Pseudomonas putida is involved in m-xylene uptake. J Bacteriol 183, 6662–6666.[CrossRef]
    [Google Scholar]
  23. Lockman, P. R., McAfee, G., Geldenhuys, W. J., Van der Schyf, C. J., Abbruscato, T. J. & Allen, D. D. ( 2005; ). Brain uptake kinetics of nicotine and cotinine after chronic nicotine exposure. J Pharmacol Exp Ther 314, 636–642.[CrossRef]
    [Google Scholar]
  24. Mayer, M. P. ( 1995; ). A new set of useful cloning and expression vectors derived from pBluescript. Gene 163, 41–46.[CrossRef]
    [Google Scholar]
  25. Moser, M., Panahandeh, S., Holzapfel, E. & Müller, M. ( 2007; ). In vitro analysis of the bacterial twin-arginine-dependent protein export. Methods Mol Biol 390, 63–79.
    [Google Scholar]
  26. Mueckler, M. ( 1994; ). Facilitative glucose transporters. Eur J Biochem 219, 713–725.[CrossRef]
    [Google Scholar]
  27. Nichols, N. N. & Harwood, C. S. ( 1997; ). PcaK, a high-affinity permease for the aromatic compounds 4-hydroxybenzoate and protocatechuate from Pseudomonas putida. J Bacteriol 179, 5056–5061.
    [Google Scholar]
  28. Prieto, M. A. & Garcia, J. L. ( 1997; ). Identification of the 4-hydroxyphenylacetate transport gene of Escherichia coli W: construction of a highly sensitive cellular biosensor. FEBS Lett 414, 293–297.[CrossRef]
    [Google Scholar]
  29. Putney, J. W. & Borzeleca, J. F. ( 1971; ). On the mechanism of [14C]-l-nicotine distribution in rat submaxillary gland in vitro. J Pharmacol Exp Ther 178, 180–191.
    [Google Scholar]
  30. Roduit, J.-P., Wellig, A. & Kiener, A. ( 1997; ). Renewable functionalized pyridines derived from microbial metabolites of the alkaloid (S)-nicotine. Heterocycles 45, 1687–1702.[CrossRef]
    [Google Scholar]
  31. Rojas, A., Duque, E., Mosqueda, G., Golden, G., Hurtado, A., Ramos, J. L. & Segura, A. ( 2001; ). Three efflux pumps are required to provide efficient tolerance to toluene in Pseudomonas putida DOT-T1E. J Bacteriol 183, 3967–3973.[CrossRef]
    [Google Scholar]
  32. Sachelaru, P., Schiltz, E. & Brandsch, R. ( 2006; ). A functional mobA gene for molybdopterin cytosine dinucleotide cofactor biosynthesis is required for activity and holoenzyme assembly of the heterotrimeric nicotine dehydrogenase of Arthrobacter nicotinovorans. Appl Environ Microbiol 72, 5126–5131.[CrossRef]
    [Google Scholar]
  33. Saier, M. H. ( 2000; ). A functional–phylogenetic classification system for transmembrane solute transporters. Microbiol Mol Biol Rev 64, 354–411.[CrossRef]
    [Google Scholar]
  34. Sandu, C., Chiribau, C.-B. & Brandsch, R. ( 2003; ). Characterization of HdnoR, the transcriptional repressor of the 6-hydroxy-d-nicotine oxidase gene of Arthrobacter nicotinovorans pAO1, and its DNA-binding activity in response to l- and d-nicotine derivatives. J Biol Chem 278, 51307–51315.[CrossRef]
    [Google Scholar]
  35. Sandu, C., Chiribau, C.-B., Sachelaru, P. & Brandsch, R. ( 2005; ). Plasmids for nicotine-dependent and independent gene expression in Arthrobacter nicotinovorans and other Arthrobacter species. Appl Environ Microbiol 71, 8920–8924.[CrossRef]
    [Google Scholar]
  36. Schenk, S., Hoelz, A., Krauss, B. & Decker, K. ( 1998; ). Gene structure and properties of enzymes of the plasmid-encoded nicotine catabolism of Arthrobacter nicotinovorans. J Mol Biol 284, 1323–1339.[CrossRef]
    [Google Scholar]
  37. Schievelbein, H. ( 1982; ). Nicotine, resorption and fate. Pharmacol Ther 18, 233–248.[CrossRef]
    [Google Scholar]
  38. Yanisch-Perron, C., Vieira, J. & Messing, J. ( 1985; ). Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33, 103–119.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.028688-0
Loading
/content/journal/micro/10.1099/mic.0.028688-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error