1887

Abstract

The polyoxin (POL) biosynthetic gene cluster () was recently cloned from subsp. . A 3.3 kb DNA fragment carrying an obvious open reading frame (), whose deduced product shows sequence similarity to SanG of and PimR of , was revealed within the gene cluster. Disruption of abolished POL production, which could be complemented by the integration of a single copy of into the chromosome of the non-producing mutant. The introduction of an extra copy of in the wild-type strain resulted in increased production of POLs. The transcription start point (tsp) of was determined by S1 mapping. Reverse transcriptase PCR experiments showed that PolR is required for the transcription of 18 structural genes in the gene cluster. Furthermore, we showed that and , the respective first genes of two putative operons ( and ) consisting of 16 and 2 of these 18 genes, have similar promoter structures. Gel retardation assays indicated that PolR has specific DNA-binding activity for the promoter regions of and . Our data suggest that PolR acts in a positive manner to regulate POL production by activating the transcription of at least two putative operons in the gene cluster.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.028639-0
2009-06-01
2020-04-09
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/6/1819.html?itemId=/content/journal/micro/10.1099/mic.0.028639-0&mimeType=html&fmt=ahah

References

  1. Anton N., Mendes M. V., Martin J. F., Aparicio J. F.. 2004; Identification of PimR as a positive regulator of pimaricin biosynthesis in Streptomyces natalensis . J Bacteriol186:2567–2575
    [Google Scholar]
  2. Arias P., Fernandez-Moreno M. A., Malpartida F.. 1999; Characterization of the pathway-specific positive transcriptional regulator for actinorhodin biosynthesis in Streptomyces coelicolor A3(2) as a DNA-binding protein. J Bacteriol181:6958–6968
    [Google Scholar]
  3. Bierman M., Logan R., O'Brien K., Seno E. T., Rao R. N., Schoner B. E.. 1992; Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene116:43–49
    [Google Scholar]
  4. Bormann C., Mohrle V., Bruntner C.. 1996; Cloning and heterologous expression of the entire set of structural genes for nikkomycin synthesis from Streptomyces tendae Tu901 in Streptomyces lividans . J Bacteriol178:1216–1218
    [Google Scholar]
  5. Bruntner C., Lauer B., Schwarz W., Mohrle V., Bormann C.. 1999; Molecular characterization of co-transcribed genes from Streptomyces tendae Tu901 involved in the biosynthesis of the peptidyl moiety of the peptidyl nucleoside antibiotic nikkomycin. Mol Gen Genet262:102–114
    [Google Scholar]
  6. Chater K. F.. 1990; The improving prospects for yield increase by genetic engineering in antibiotic producing Streptomyces . Biotechnology8:115–121
    [Google Scholar]
  7. Chen W., Zeng H., Tan H.. 2000; Cloning, sequencing, and function of sanF : a gene involved in nikkomycin biosynthesis of Streptomyces ansochromogenes . Curr Microbiol41:312–316
    [Google Scholar]
  8. Chen W., Huang T., He X., Meng Q., You D., Bai L., Li J., Wu M., Li R.. other authors 2009; Characterization of the polyoxin biosynthetic gene cluster from Streptomyces cacaoi and engineered production of polyoxin H. J Biol Chem284:10627–10638
    [Google Scholar]
  9. Endo A., Kakiki K., Misato T.. 1970; Mechanism of action of the antifungal agent polyoxin D. J Bacteriol104:189–196
    [Google Scholar]
  10. Folcher M., Gaillard H., Nguyen L. T., Nguyen K. T., Lacroix P., Bamas-Jacques N., Rinkel M., Thompson C. J.. 2001; Pleiotropic functions of a Streptomyces pristinaespiralis autoregulator receptor in development, antibiotic biosynthesis, and expression of a superoxide dismutase. J Biol Chem276:44297–44306
    [Google Scholar]
  11. He J., Hertweck C.. 2003; Iteration as programmed event during polyketide assembly; molecular analysis of the aureothin biosynthesis gene cluster. Chem Biol10:1225–1232
    [Google Scholar]
  12. Hopwood D. A., Chater K. F., Bibb M. J.. 1995; Genetics of antibiotic production in Streptomyces coelicolor A3(2), a model streptomycete. Biotechnology28:65–102
    [Google Scholar]
  13. Horinouchi S.. 2003; AfsR as an integrator of signals that are sensed by multiple serine/threonine kinases in Streptomyces coelicolor A3(2. J Ind Microbiol Biotechnol30:462–467
    [Google Scholar]
  14. Horinouchi S.. 2007; Mining and polishing of the treasure trove in the bacterial genus Streptomyces . Biosci Biotechnol Biochem71:283–299
    [Google Scholar]
  15. Hranueli D., Cullum J., Basrak B., Goldstein P., Long P. F.. 2005; Plasticity of the Streptomyces genome – evolution and engineering of new antibiotics. Curr Med Chem12:1697–1704
    [Google Scholar]
  16. Isono K.. 1988; Nucleoside antibiotics: structure, biological activity, and biosynthesis. J Antibiot (Tokyo41:1711–1739
    [Google Scholar]
  17. Isono K., Asahi K., Suzuki S.. 1969; Studies on polyoxins, antifungal antibiotics. 13. The structure of polyoxins. J Am Chem Soc91:7490–7505
    [Google Scholar]
  18. Kieser T., Bibb M. J., Buttner M. J., Chater K. F., Hopwood D. A.. 2000; Practical Streptomyces Genetics Norwich, UK: John Innes Foundation;
  19. Kuhstoss S., Richardson M. A., Rao R. N.. 1991; Plasmid cloning vectors that integrate site-specifically in Streptomyces spp. Gene97:143–146
    [Google Scholar]
  20. Lauer B., Sussmuth R., Kaiser D., Jung G., Bormann C.. 2000; A putative enolpyruvyl transferase gene involved in nikkomycin biosynthesis. J Antibiot (Tokyo53:385–392
    [Google Scholar]
  21. Lauer B., Russwurm R., Schwarz W., Kalmanczhelyi A., Bruntner C., Rosemeier A., Bormann C.. 2001; Molecular characterization of co-transcribed genes from Streptomyces tendae Tu901 involved in the biosynthesis of the peptidyl moiety and assembly of the peptidyl nucleoside antibiotic nikkomycin. Mol Gen Genet264:662–673
    [Google Scholar]
  22. Leipe D. D., Koonin E. V., Aravind L.. 2003; Evolution and classification of P-loop kinases and related proteins. J Mol Biol333:781–815
    [Google Scholar]
  23. Leskiw B. K., Lawlor E. J., Fernandez-Abalos J. M., Chater K. F.. 1991; TTA codons in some genes prevent their expression in a class of developmental, antibiotic-negative, Streptomyces mutants. Proc Natl Acad Sci U S A88:2461–2465
    [Google Scholar]
  24. Liu G., Tian Y., Yang H., Tan H.. 2005; A pathway-specific transcriptional regulatory gene for nikkomycin biosynthesis in Streptomyces ansochromogenes that also influences colony development. Mol Microbiol55:1855–1866
    [Google Scholar]
  25. Müller H., Furter R., Zähner H., Rast D. M.. 1981; Metabolic products of microorganisms. Arch Microbiol130:195–197
    [Google Scholar]
  26. Narva K. E., Feitelson J. S.. 1990; Nucleotide sequence and transcriptional analysis of the redD locus of Streptomyces coelicolor A3(2. J Bacteriol172:326–333
    [Google Scholar]
  27. Paradkar A. S., Aidoo K. A., Jensen S. E.. 1998; A pathway-specific transcriptional activator regulates late steps of clavulanic acid biosynthesis in Streptomyces clavuligerus . Mol Microbiol27:831–843
    [Google Scholar]
  28. Patel S., Latterich M.. 1998; The AAA team: related ATPases with diverse functions. Trends Cell Biol8:65–71
    [Google Scholar]
  29. Perez-Llarena F. J., Liras P., Rodriguez-Garcia A., Martin J. F.. 1997; A regulatory gene ( ccaR ) required for cephamycin and clavulanic acid production in Streptomyces clavuligerus : amplification results in overproduction of both beta-lactam compounds. J Bacteriol179:2053–2059
    [Google Scholar]
  30. Stutzman-Engwall K. J., Otten S. L., Hutchinson C. R.. 1992; Regulation of secondary metabolism in Streptomyces spp. and overproduction of daunorubicin in Streptomyces peucetius . J Bacteriol174:144–154
    [Google Scholar]
  31. Tanaka A., Takano Y., Ohnishi Y., Horinouchi S.. 2007; AfsR recruits RNA polymerase to the afsS promoter: a model for transcriptional activation by SARPs. J Mol Biol369:322–333
    [Google Scholar]
  32. Wietzorrek A., Bibb M.. 1997; A novel family of proteins that regulates antibiotic production in streptomycetes appears to contain an OmpR-like DNA-binding fold. Mol Microbiol25:1181–1184
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.028639-0
Loading
/content/journal/micro/10.1099/mic.0.028639-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error