1887

Abstract

The gene cluster (′-) of has previously been characterized as a necessary component for proper invasion into plant root tissue. It has been suggested to encode a multi-subunit K/H antiporter, since mutations in the region rendered cells sensitive to K and alkali, and because there is high amino acid sequence similarity to previously characterized multi-subunit cation/H antiporters (Mrp antiporters). However, the detailed transport properties of the Pha1 system are yet to be determined. Interestingly, most of the Mrp antiporters are highly selective for Na, unlike the Pha1 system. Here, we report the functional expression of the Pha1 system in and the measurement of cation/H antiport activity. We showed that the Pha1 system is indeed a K/H antiporter with a pH optimum under mildly alkaline conditions. Moreover, we found that the Pha1 system can transport Na; this was unexpected based on previous phenotypic analyses of mutants. Furthermore, we demonstrated that the cation selectivity of the Pha1 system was altered when the pH was lowered from the optimum. The downregulation of Na/H and K/H antiport activities upon acidic shift appeared to occur via different processes, which might indicate the presence of distinct mechanisms for the regulation of the K/H and Na/H antiport activities of the Pha1 system.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.028563-0
2009-08-01
2020-08-11
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/8/2750.html?itemId=/content/journal/micro/10.1099/mic.0.028563-0&mimeType=html&fmt=ahah

References

  1. Apse M. P., Blumwald E.. 2007; Na+ transport in plants. FEBS Lett581:2247–2254
    [Google Scholar]
  2. Brett C. L., Donowitz M., Rao R.. 2005; Evolutional origins of eukaryotic sodium/proton exchanger. Am J Physiol Cell Physiol288:C223–C239
    [Google Scholar]
  3. Dzioba-Winogrodzki J., Winogrodzki O., Krulwich T. A., Boin M. A., Hase C. C., Dibrov P.. 2009; The Vibrio cholerae Mrp system: cation/proton antiport properties and enhancement of bile salt resistance in a heterologous host. J Mol Microbiol Biotechnol16:176–186
    [Google Scholar]
  4. Forrai T., Vincze E., Banfalvi Z., Kiss G. B., Randhawa G. S., Kondorosi A.. 1983; Localization of symbiotic mutations in Rhizobium meliloti. J Bacteriol153:635–643
    [Google Scholar]
  5. Hiramatsu T., Kodama K., Kuroda T., Mizushima T., Tsuchiya T.. 1998; A putative multisubunit Na+/H+ antiporter from Staphylococcus aureus. J Bacteriol180:6642–6648
    [Google Scholar]
  6. Ito M., Guffanti A. A., Oudega B., Krulwich T. A.. 1999; mrp, a multifunctional locus in Bacillus subtilis with roles in resistance to cholate and to Na+ and in pH homeostasis. J Bacteriol181:2394–2402
    [Google Scholar]
  7. Ito M., Guffanti A. A., Wang W., Krulwich T. A.. 2000; Effects of nonpolar mutations in each of the seven Bacillus subtilis mrp genes suggest complex interaction among the gene products in support of Na+ and alkali but not cholate resistance. J Bacteriol182:5663–5670
    [Google Scholar]
  8. Ito M., Guffanti A. A., Krulwich T. A.. 2001; Mrp-dependent Na+/H+ antiporters of Bacillus exhibit characteristics that are unanticipated for completely secondary active transporters. FEBS Lett496:117–120
    [Google Scholar]
  9. Kajiyama Y., Otagiri M., Sekiguchi J., Kosono S., Kudo T.. 2007; Complex formation by the mrpABCDEFG gene products, which constitute a principal Na+/H+ antiporter in Bacillus subtilis. J Bacteriol189:7511–7514
    [Google Scholar]
  10. Kosono S., Morotomi S., Kitada M., Kudo T.. 1999; Analyses of a Bacillus subtilis homologue of the Na+/H+ antiporter gene which is important for pH homeostasis of alkaliphilic Bacillus sp. C-125. Biochim Biophys Acta 1409;171–175
    [Google Scholar]
  11. Kosono S., Ohashi Y., Kawamura F., Kitada M., Kudo T.. 2000; Function of a principal Na+/H+ antiporter, ShaA, is required for initiation of sporulation in Bacillus subtilis. J Bacteriol182:898–904
    [Google Scholar]
  12. Kosono S., Haga K., Tomizawa R., Kajiyama Y., Hatano K., Takeda S., Wakai Y., Hino M., Kudo T.. 2005; Characterization of a multigene-encoded sodium/hydrogen antiporter (Sha) from Pseudomonas aeruginosa: its involvement in pathogenesis. J Bacteriol187:5242–5248
    [Google Scholar]
  13. Krulwich T. A., Guffanti A. A., Ito M.. 1999; pH tolerance in Bacillus: alkaliphiles versus non-alkaliphiles. Novartis Found Symp221:167–182
    [Google Scholar]
  14. Malo M. E., Fliegel L.. 2006; Physiological role and regulation of the Na+/H+ exchanger. Can J Physiol Pharmacol84:1081–1095
    [Google Scholar]
  15. Morino M., Natsui S., Swartz T. H., Krulwich T. A., Ito M.. 2008; Single gene deletions of mrpA to mrpG and mrpE point mutations affect activity of the Mrp Na+/H+ antiporter of alkaliphilic Bacillus and formation of hetero-oligomeric Mrp complexes. J Bacteriol190:4162–4172
    [Google Scholar]
  16. Ohyama T., Igarashi K., Kobayashi H.. 1994; Physiological role of the chaA gene in sodium and calcium circulations at a high pH in Escherichia coli. J Bacteriol176:4311–4315
    [Google Scholar]
  17. Padan E., Venturi M., Gerchman Y., Dover N.. 2001; Na+/H+ antiporters. Biochim Biophys Acta 1505;144–157
    [Google Scholar]
  18. Putnoky P., Grosskopf E., Cam Ha D. T., Kiss G. B., Kondorosi A.. 1988; Rhizobium fix genes mediate at least two communication steps in symbiotic nodule development. J Cell Biol106:597–607
    [Google Scholar]
  19. Putnoky P., Kereszt A., Nakamura T., Endre G., Grosskopf E., Kiss P., Kondorosi A.. 1998; The pha gene cluster of Rhizobium meliloti involved in pH adaptation and symbiosis encodes a novel type of K+ efflux system. Mol Microbiol28:1091–1101
    [Google Scholar]
  20. Radchenko M. V., Tanaka K., Waditee R., Oshimi S., Matsuzaki Y., Fukuhara M., Kobayashi H., Takabe T., Nakamura T.. 2006; Potassium/proton antiport system of Escherichia coli. J Biol Chem281:19822–19829
    [Google Scholar]
  21. Rosen B. P.. 1986; Ion extrusion systems in Escherichia coli. Methods Enzymol125:328–336
    [Google Scholar]
  22. Saier M. H. Jr, Eng B. H., Fard S., Garg J., Haggerty D. A., Hutchinson W. J., Jack D. L., Lai E. C., Liu H. J.. other authors 1999; Phylogenetic characterization of novel transport protein families revealed by genome analyses. Biochim Biophys Acta1422:1–56
    [Google Scholar]
  23. Swartz T. H., Ikewada S., Ishikawa O., Ito M., Krulwich T. A.. 2005; The Mrp system: a giant among monovalent cation/proton antiporters?. Extremophiles9:345–354
    [Google Scholar]
  24. Swartz T. H., Ito M., Ohira T., Natsui S., Hicks D. B., Krulwich T. A.. 2007; Catalytic properties of Staphylococcus aureus and Bacillus members of the secondary cation/proton antiporter-3 (Mrp) family are revealed by an optimized assay in an Escherichia coli host. J Bacteriol189:3081–3090
    [Google Scholar]
  25. Yang L., Jiang J., Wei W., Zhang B., Wang L., Yang S.. 2006; The pha2 gene cluster involved in Na + resistance and adaptation to alkaline pH in Sinorhizobium fredii RT19 encodes a monovalent cation/proton antiporter. FEMS Microbiol Lett262:172–177
    [Google Scholar]
  26. Yoshinaka T., Takasu H., Tomizawa R., Kosono S., Kudo T.. 2003; A shaE deletion mutant showed lower Na+ sensitivity compared to other deletion mutants in the Bacillus subtilis sodium/hydrogen antiporter (Sha) system. J Biosci Bioeng95:306–309
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.028563-0
Loading
/content/journal/micro/10.1099/mic.0.028563-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error