1887

Abstract

serotype Typhimurium ( Typhimurium) definitive phage type (DT) 104 has become a widespread cause of human and other animal infections worldwide. The severity of clinical illness in Typhimurium DT104 outbreaks suggests that this strain possesses enhanced virulence. ArtA and ArtB – encoded by a prophage in Typhimurium DT104 – are homologues of components of pertussis toxin (PTX), including its ADP-ribosyltransferase subunit. Here, we show that exposing DT104 to mitomycin C, a DNA-damaging agent, induced production of prophage-encoded ArtA/ArtB. Pertussis-sensitive G proteins were labelled in the presence of [P]NAD and ArtA, and the label was released by HgCl, which is known to cleave cysteine-ADP-ribose bonds. ADP-dependent modification of G proteins was markedly reduced in -synthesized ArtA and ArtA, in which alanine was substituted for the conserved arginine at position 6 (necessary for NAD binding) and the predicted catalytic glutamate at position 115, respectively. A cellular ADP-ribosylation assay and two-dimensional electrophoresis showed that ArtA- and PTX-induced ADP-ribosylation in Chinese hamster ovary (CHO) cells occur with the same type of G proteins. Furthermore, exposing CHO cells to the ArtA/ArtB-containing culture supernatant of DT104 resulted in a clustered growth pattern, as is observed in PTX-exposed CHO cells. Hydrogen peroxide, an oxidative stressor, also induced ArtA/ArtB production, suggesting that these agents induce synthesis of ArtA/ArtB. These results, taken together, suggest that ArtA/ArtB is an active toxin similar to PTX.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.028399-0
2009-11-01
2019-12-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/11/3710.html?itemId=/content/journal/micro/10.1099/mic.0.028399-0&mimeType=html&fmt=ahah

References

  1. Aktories, K., Weller, U. & Chhatwal, G. S. ( 1987; ). Clostridium botulinum type C produces a novel ADP-ribosyltransferase distinct from botulinum C2 toxin. FEBS Lett 212, 109–113.[CrossRef]
    [Google Scholar]
  2. Allen, C. A., Fedorka-Cray, P. J., Vazquez-Torres, A., Suyemoto, M., Altier, C., Ryder, L. R., Fang, F. C. & Libby, S. J. ( 2001; ). In vitro and in vivo assessment of Salmonella enterica serovar Typhimurium DT104 virulence. Infect Immun 69, 4673–4677.[CrossRef]
    [Google Scholar]
  3. Briggs, C. E. & Fratamico, P. M. ( 1999; ). Molecular characterization of an antibiotic resistance gene cluster of Salmonella typhimurium DT104. Antimicrob Agents Chemother 43, 846–849.[CrossRef]
    [Google Scholar]
  4. Burnette, W. N. ( 1994; ). AB5 ADP-ribosylating toxins: comparative anatomy and physiology. Structure 2, 151–158.[CrossRef]
    [Google Scholar]
  5. Carlson, S. A., Meyerholz, D. K., Stabel, T. J. & Jones, B. D. ( 2001; ). Secretion of a putative cytotoxin in multiple antibiotic resistant Salmonella enterica serotype Typhimurium phagetype DT104. Microb Pathog 31, 201–204.[CrossRef]
    [Google Scholar]
  6. Carroll, S. F. & Collier, R. J. ( 1984; ). NAD binding site of diphtheria toxin: identification of a residue within the nicotinamide subsite by photochemical modification with NAD. Proc Natl Acad Sci U S A 81, 3307–3311.[CrossRef]
    [Google Scholar]
  7. Collier, R. J. ( 2001; ). Understanding the mode of action of diphtheria toxin: a perspective on progress during the 20th century. Toxicon 39, 1793–1803.[CrossRef]
    [Google Scholar]
  8. Domenighini, M. & Rappuoli, R. ( 1996; ). Three conserved consensus sequences identify the NAD-binding site of ADP-ribosylating enzymes, expressed by eukaryotes, bacteria and T-even bacteriophages. Mol Microbiol 21, 667–674.[CrossRef]
    [Google Scholar]
  9. Figueroa-Bossi, N. & Bossi, L. ( 1999; ). Inducible prophages contribute to Salmonella virulence in mice. Mol Microbiol 33, 167–176.[CrossRef]
    [Google Scholar]
  10. Finkelstein, R. A., Atthasampunna, P., Chulasamaya, M. & Charunmethee, P. ( 1966; ). Pathogenesis of experimental cholera: biologic ativities of purified procholeragen A. J Immunol 96, 440–449.
    [Google Scholar]
  11. Glynn, M. K., Bopp, C., Dewitt, W., Dabney, P., Mokhtar, M. & Angulo, F. J. ( 1998; ). Emergence of multidrug-resistant Salmonella enterica serotype typhimurium DT104 infections in the United States. N Engl J Med 338, 1333–1338.[CrossRef]
    [Google Scholar]
  12. Guerrant, R. L., Brunton, L. L., Schnaitman, T. C., Rebhun, L. I. & Gilman, A. G. ( 1974; ). Cyclic adenosine monophosphate and alteration of Chinese hamster ovary cell morphology: a rapid, sensitive in vitro assay for the enterotoxins of Vibrio cholerae and Escherichia coli. Infect Immun 10, 320–327.
    [Google Scholar]
  13. Han, S., Craig, J. A., Putnam, C. D., Carozzi, N. B. & Tainer, J. A. ( 1999; ). Evolution and mechanism from structures of an ADP-ribosylating toxin and NAD complex. Nat Struct Biol 6, 932–936.[CrossRef]
    [Google Scholar]
  14. Hewlett, E. L., Sauer, K. T., Myers, G. A., Cowell, J. L. & Guerrant, R. L. ( 1983; ). Induction of a novel morphological response in Chinese hamster ovary cells by pertussis toxin. Infect Immun 40, 1198–1203.
    [Google Scholar]
  15. Ho, S. N., Hunt, H. D., Horton, R. M., Pullen, J. K. & Pease, L. R. ( 1989; ). Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77, 51–59.[CrossRef]
    [Google Scholar]
  16. Imlay, J. A. & Linn, S. ( 1987; ). Mutagenesis and stress responses induced in Escherichia coli by hydrogen peroxide. J Bacteriol 169, 2967–2976.
    [Google Scholar]
  17. Kannan, T. R. & Baseman, J. B. ( 2006; ). ADP-ribosylating and vacuolating cytotoxin of Mycoplasma pneumoniae represents unique virulence determinant among bacterial pathogens. Proc Natl Acad Sci U S A 103, 6724–6729.[CrossRef]
    [Google Scholar]
  18. Katada, T. & Ui, M. ( 1982; ). Direct modification of the membrane adenylate cyclase system by islet-activating protein due to ADP-ribosylation of a membrane protein. Proc Natl Acad Sci U S A 79, 3129–3133.[CrossRef]
    [Google Scholar]
  19. Krueger, K. M. & Barbieri, J. T. ( 1995; ). The family of bacterial ADP-ribosylating exotoxins. Clin Microbiol Rev 8, 34–47.
    [Google Scholar]
  20. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.[CrossRef]
    [Google Scholar]
  21. Lesnick, M. L., Reiner, N. E., Fierer, J. & Guiney, D. G. ( 2001; ). The Salmonella spvB virulence gene encodes an enzyme that ADP-ribosylates actin and destabilizes the cytoskeleton of eukaryotic cells. Mol Microbiol 39, 1464–1470.[CrossRef]
    [Google Scholar]
  22. Locht, C. ( 1999; ). Molecular aspects of Bordetella pertussis pathogenesis. Int Microbiol 2, 137–144.
    [Google Scholar]
  23. Maehama, T., Nishina, H., Hoshino, S., Kanaho, Y. & Katada, T. ( 1995; ). NAD+-dependent ADP-ribosylation of T lympocyte alloantigen RT6.1 reversibly proceeding in intact rat lymphocytes. J Biol Chem 270, 22747–22751.[CrossRef]
    [Google Scholar]
  24. Mekalanos, J. J., Collier, R. J. & Romig, W. R. ( 1979; ). Enzymic activity of cholera toxin. I. New method of assay and the mechanism of ADP-ribosyl transfer. J Biol Chem 254, 5849–5854.
    [Google Scholar]
  25. Merritt, E. A. & Hol, W. G. ( 1995; ). AB5 toxins. Curr Opin Struct Biol 5, 165–171.[CrossRef]
    [Google Scholar]
  26. Moss, J., Stanley, S. J., Burns, D. L., Hsia, J. A., Yost, D. A., Myers, G. A. & Hewlett, E. L. ( 1983; ). Activation by thiol of the latent NAD glycohydrolase and ADP-ribosyltransferase activities of Bordetella pertussis toxin (islet-activating protein). J Biol Chem 258, 11879–11882.
    [Google Scholar]
  27. Pallen, M. J., Lam, A. C., Loman, N. J. & McBride, A. ( 2001; ). An abundance of bacterial ADP-ribosyltransferases – implications for the origin of exotoxins and their human homologues. Trends Microbiol 9, 302–307.[CrossRef]
    [Google Scholar]
  28. Saitoh, M., Tanaka, K., Nishimori, K., Makino, S., Kanno, T., Ishihara, R., Hatama, S., Kitano, R., Kishima, M. & other authors ( 2005; ). The artAB genes encode a putative ADP-ribosyltransferase toxin homologue associated with Salmonella enterica serovar Typhimurium DT104. Microbiology 151, 3089–3096.[CrossRef]
    [Google Scholar]
  29. Sameshima, T., Akiba, M., Izumiya, H., Terajima, J., Tamura, K., Watanabe, H. & Nakazawa, M. ( 2000; ). Salmonella typhimurium DT104 from livestock in Japan. Jpn J Infect Dis 53, 15–16.
    [Google Scholar]
  30. Sandvang, D., Aarestrup, F. M. & Jensen, L. B. ( 1998; ). Characterisation of integrons and antibiotic resistance genes in Danish multiresistant Salmonella enterica Typhimurium DT104. FEMS Microbiol Lett 160, 37–41.[CrossRef]
    [Google Scholar]
  31. Schering, B., Barmann, M., Chhatwal, G. S., Geipel, U. & Aktories, K. ( 1988; ). ADP-ribosylation of skeletal muscle and non-muscle actin by Clostridium perfringens iota toxin. Eur J Biochem 171, 225–229.[CrossRef]
    [Google Scholar]
  32. Spano, S., Ugalde, J. E. & Galan, J. E. ( 2008; ). Delivery of a Salmonella Typhi exotoxin from a host intracellular compartment. Cell Host Microbe 3, 30–38.[CrossRef]
    [Google Scholar]
  33. Threlfall, E. J., Frost, J. A., Ward, L. R. & Rowe, B. ( 1994; ). Epidemic in cattle and humans of Salmonella typhimurium DT 104 with chromosomally integrated multiple drug resistance. Vet Rec 134, 577 [CrossRef]
    [Google Scholar]
  34. Villar, R. G., Macek, M. D., Simons, S., Hayes, P. S., Goldoft, M. J., Lewis, J. H., Rowan, L. L., Hursh, D., Patnode, M. & Mead, P. S. ( 1999; ). Investigation of multidrug-resistant Salmonella serotype typhimurium DT104 infections linked to raw-milk cheese in Washington State. JAMA 281, 1811–1816.[CrossRef]
    [Google Scholar]
  35. Wagner, P. L. & Waldor, M. K. ( 2002; ). Bacteriophage control of bacterial virulence. Infect Immun 70, 3985–3993.[CrossRef]
    [Google Scholar]
  36. Wagner, P. L., Acheson, D. W. & Waldor, M. K. ( 2001; ). Human neutrophils and their products induce Shiga toxin production by enterohemorrhagic Escherichia coli. Infect Immun 69, 1934–1937.[CrossRef]
    [Google Scholar]
  37. Xu, Y. & Barbieri, J. T. ( 1995; ). Pertussis toxin-mediated ADP-ribosylation of target proteins in Chinese hamster ovary cells involves a vesicle trafficking mechanism. Infect Immun 63, 825–832.
    [Google Scholar]
  38. Xu, Y. & Barbieri, J. T. ( 1996; ). Pertussis toxin-catalyzed ADP-ribosylation of Gi-2 and Gi-3 in CHO cells is modulated by inhibitors of intracellular trafficking. Infect Immun 64, 593–599.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.028399-0
Loading
/content/journal/micro/10.1099/mic.0.028399-0
Loading

Data & Media loading...

Supplements

vol. , part 11, pp. 3710 - 3718

Sequences of primers used in this study [ PDF] (54 kb)



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error