Detection of 140 clinically relevant antibiotic-resistance genes in the plasmid metagenome of wastewater treatment plant bacteria showing reduced susceptibility to selected antibiotics Free

Abstract

To detect plasmid-borne antibiotic-resistance genes in wastewater treatment plant (WWTP) bacteria, 192 resistance-gene-specific PCR primer pairs were designed and synthesized. Subsequent PCR analyses on total plasmid DNA preparations obtained from bacteria of activated sludge or the WWTP's final effluents led to the identification of, respectively, 140 and 123 different resistance-gene-specific amplicons. The genes detected included aminoglycoside, -lactam, chloramphenicol, fluoroquinolone, macrolide, rifampicin, tetracycline, trimethoprim and sulfonamide resistance genes as well as multidrug efflux and small multidrug resistance genes. Some of these genes were only recently described from clinical isolates, demonstrating genetic exchange between clinical and WWTP bacteria. Sequencing of selected resistance-gene-specific amplicons confirmed their identity or revealed that the amplicon nucleotide sequence is very similar to a gene closely related to the reference gene used for primer design. These results demonstrate that WWTP bacteria are a reservoir for various resistance genes. Moreover, detection of about 64 % of the 192 reference resistance genes in bacteria obtained from the WWTP's final effluents indicates that these resistance determinants might be further disseminated in habitats downstream of the sewage plant.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.028233-0
2009-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/7/2306.html?itemId=/content/journal/micro/10.1099/mic.0.028233-0&mimeType=html&fmt=ahah

References

  1. Akinbowale O. L., Peng H., Barton M. D. 2007; Diversity of tetracycline resistance genes in bacteria from aquaculture sources in Australia. J Appl Microbiol 103:2016–2025
    [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410
    [Google Scholar]
  3. Bennett P. M. 1999; Integrons and gene cassettes: a genetic construction kit for bacteria. J Antimicrob Chemother 43:1–4
    [Google Scholar]
  4. Bönemann G., Stiens M., Pühler A., Schlüter A. 2006; Mobilizable IncQ-related plasmid carrying a new quinolone resistance gene, qnrS2, isolated from the bacterial community of a wastewater treatment plant. Antimicrob Agents Chemother 50:3075–3080
    [Google Scholar]
  5. Bonnet R., Recule C., Baraduc R., Chanal C., Sirot D., De Champs C., Sirot J. 2003; Effect of D240G substitution in a novel ESBL CTX-M-27. J Antimicrob Chemother 52:29–35
    [Google Scholar]
  6. Bywater R. J. 2004; Veterinary use of antimicrobials and emergence of resistance in zoonotic and sentinel bacteria in the EU. J Vet Med B Infect Dis Vet Public Health 51:361–363
    [Google Scholar]
  7. Bywater R. J. 2005; Identification and surveillance of antimicrobial resistance dissemination in animal production. Poult Sci 84:644–648
    [Google Scholar]
  8. Cartelle M., del Mar Tomas M., Molina F., Moure R., Villanueva R., Bou G. 2004; High-level resistance to ceftazidime conferred by a novel enzyme, CTX-M-32, derived from CTX-M-1 through a single Asp240-Gly substitution. Antimicrob Agents Chemother 48:2308–2313
    [Google Scholar]
  9. Chee-Sanford J. C., Aminov R. I., Krapac I. J., Garrigues-Jeanjean N., Mackie R. I. 2001; Occurrence and diversity of tetracycline resistance genes in lagoons and groundwater underlying two swine production facilities. Appl Environ Microbiol 67:1494–1502
    [Google Scholar]
  10. Dang H., Ren J., Song L., Sun S., An L. 2008; Diverse tetracycline resistant bacteria and resistance genes from coastal waters of Jiaozhou Bay. Microb Ecol 55:237–246
    [Google Scholar]
  11. Davies J. 1994; Inactivation of antibiotics and the dissemination of resistance genes. Science 264:375–382
    [Google Scholar]
  12. Davison J. 1999; Genetic exchange between bacteria in the environment. Plasmid 42:73–91
    [Google Scholar]
  13. Doublet B., Weill F. X., Fabre L., Chaslus-Dancla E., Cloeckaert A. 2004; Variant Salmonella genomic island 1 antibiotic resistance gene cluster containing a novel 3′- N-aminoglycoside acetyltransferase gene cassette, aac(3)-Id, in Salmonella enterica serovar newport . Antimicrob Agents Chemother 48:3806–3812
    [Google Scholar]
  14. Eichenlaub R., Figurski D., Helinski D. R. 1977; Bidirection replication from a unique origin in a mini-F plasmid. Proc Natl Acad Sci U S A 74:1138–1141
    [Google Scholar]
  15. Fiett J., Baraniak A., Mrowka A., Fleischer M., Drulis-Kawa Z., Naumiuk L., Samet A., Hryniewicz W., Gniadkowski M. 2006; Molecular epidemiology of acquired-metallo-beta-lactamase-producing bacteria in Poland. Antimicrob Agents Chemother 50:880–886
    [Google Scholar]
  16. Geisenberger O., Ammendola A., Christensen B. B., Molin S., Schleifer K. H., Eberl L. 1999; Monitoring the conjugal transfer of plasmid RP4 in activated sludge and in situ identification of the transconjugants. FEMS Microbiol Lett 174:9–17
    [Google Scholar]
  17. Göbel A., Thomsen A., McArdell C. S., Alder A. C., Giger W., Theiss N., Löffler D., Ternes T. A. 2005; Extraction and determination of sulfonamides, macrolides, and trimethoprim in sewage sludge. J Chromatogr A 1085:179–189
    [Google Scholar]
  18. Golet E. M., Strehler A., Alder A. C., Giger W. 2002; Determination of fluoroquinolone antibacterial agents in sewage sludge and sludge-treated soil using accelerated solvent extraction followed by solid-phase extraction. Anal Chem 74:5455–5462
    [Google Scholar]
  19. Golet E. M., Xifra I., Siegrist H., Alder A. C., Giger W. 2003; Environmental exposure assessment of fluoroquinolone antibacterial agents from sewage to soil. Environ Sci Technol 37:3243–3249
    [Google Scholar]
  20. Goossens H. 2005; European status of resistance in nosocomial infections. Chemotherapy 51:177–181
    [Google Scholar]
  21. Gordon D., Abajian C., Green P. 1998; Consed: a graphical tool for sequence finishing. Genome Res 8:195–202
    [Google Scholar]
  22. Gordon D., Desmarais C., Green P. 2001; Automated finishing with autofinish. Genome Res 11:614–625
    [Google Scholar]
  23. Götz A., Pukall R., Smit E., Tietze E., Prager R., Tschäpe H., van Elsas J. D., Smalla K. 1996; Detection and characterization of broad-host-range plasmids in environmental bacteria by PCR. Appl Environ Microbiol 62:2621–2628
    [Google Scholar]
  24. Guillaume G., Verbrugge D., Chasseur-Libotte M., Moens W., Collard J. 2000; PCR typing of tetracycline resistance determinants (Tet A–E) in Salmonella enterica serotype Hadar and in the microbial community of activated sludges from hospital and urban wastewater treatment facilities in Belgium. FEMS Microbiol Ecol 32:77–85
    [Google Scholar]
  25. Hall R. M., Collis C. M. 1995; Mobile gene cassettes and integrons – capture and spread of genes by site-specific recombination. Mol Microbiol 15:593–600
    [Google Scholar]
  26. Hata M., Suzuki M., Matsumoto M., Takahashi M., Sato K., Ibe S., Sakae K. 2005; Cloning of a novel gene for quinolone resistance from a transferable plasmid in Shigella flexneri 2b. Antimicrob Agents Chemother 49:801–803
    [Google Scholar]
  27. Henriques I., Moura A., Alves A., Saavedra M. J., Correia A. 2006a; Analysing diversity among β-lactamase encoding genes in aquatic environments. FEMS Microbiol Ecol 56:418–429
    [Google Scholar]
  28. Henriques I. S., Fonseca F., Alves A., Saavedra M. J., Correia A. 2006b; Occurrence and diversity of integrons and β-lactamase genes among ampicillin-resistant isolates from estuarine waters. Res Microbiol 157:938–947
    [Google Scholar]
  29. Heritier C., Poirel L., Nordmann P. 2004; Genetic and biochemical characterization of a chromosome-encoded carbapenem-hydrolyzing ambler class D beta-lactamase from Shewanella algae . Antimicrob Agents Chemother 48:1670–1675
    [Google Scholar]
  30. Heuer H., Szczepanowski R., Schneiker S., Pühler A., Top E. M., Schlüter A. 2004; The complete sequences of plasmids pB2 and pB3 provide evidence for a recent ancestor of the IncP-1 β group without any accessory genes. Microbiology 150:3591–3599
    [Google Scholar]
  31. Jacoby G. A., Walsh K. E., Mills D. M., Walker V. J., Oh H., Robicsek A., Hooper D. C. 2006; qnrB, another plasmid-mediated gene for quinolone resistance. Antimicrob Agents Chemother 50:1178–1182
    [Google Scholar]
  32. Jarnheimer P. A., Ottoson J., Lindberg R., Stenstrom T. A., Johansson M., Tysklind M., Winner M. M., Olsen B. 2004; Fluoroquinolone antibiotics in a hospital sewage line; occurrence, distribution and impact on bacterial resistance. Scand J Infect Dis 36:752–755
    [Google Scholar]
  33. Kümmerer K. 2003; Significance of antibiotics in the environment. J Antimicrob Chemother 52:5–7
    [Google Scholar]
  34. Kümmerer K., Al-Ahmad A., Mersch-Sundermann V. 2000; Biodegradability of some antibiotics, elimination of the genotoxicity and affection of wastewater bacteria in a simple test. Chemosphere 40:701–710
    [Google Scholar]
  35. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A. & other authors; 2007; clustal w and clustal_x version 2.0. Bioinformatics 23:2947–2948
    [Google Scholar]
  36. Lee H. B., Peart T. E., Svoboda M. L. 2007; Determination of ofloxacin, norfloxacin, and ciprofloxacin in sewage by selective solid-phase extraction, liquid chromatography with fluorescence detection, and liquid chromatography-tandem mass spectrometry. J Chromatogr A 113945–52
    [Google Scholar]
  37. Lim S. M., Webb S. A. 2005; Nosocomial bacterial infections in intensive care units. I. Organisms and mechanisms of antibiotic resistance. Anaesthesia 60:887–902
    [Google Scholar]
  38. Lindberg R. H., Wennberg P., Johansson M. I., Tysklind M., Andersson B. A. 2005; Screening of human antibiotic substances and determination of weekly mass flows in five sewage treatment plants in Sweden. Environ Sci Technol 39:3421–3429
    [Google Scholar]
  39. Lindberg R. H., Olofsson U., Rendahl P., Johansson M. I., Tysklind M., Andersson B. A. 2006; Behavior of fluoroquinolones and trimethoprim during mechanical, chemical, and active sludge treatment of sewage water and digestion of sludge. Environ Sci Technol 40:1042–1048
    [Google Scholar]
  40. Llanes C., Gabant P., Couturier M., Bayer L., Plesiat P. 1996; Molecular analysis of the replication elements of the broad-host-range RepA/C replicon. Plasmid 36:26–35
    [Google Scholar]
  41. Mach P. A., Grimes D. J. 1982; R-plasmid transfer in a wastewater treatment plant. Appl Environ Microbiol 44:1395–1403
    [Google Scholar]
  42. Mancini P., Fertels S., Nave D., Gealt M. A. 1987; Mobilization of plasmid pHSV106 from Escherichia coli HB101 in a laboratory-scale waste treatment facility. Appl Environ Microbiol 53:665–671
    [Google Scholar]
  43. Marcinek H., Wirth R., Muscholl-Silberhorn A., Gauer M. 1998; Enterococcus faecalis gene transfer under natural conditions in municipal sewage water treatment plants. Appl Environ Microbiol 64:626–632
    [Google Scholar]
  44. Mazel D., Davies J. 1999; Antibiotic resistance in microbes. Cell Mol Life Sci 56:742–754
    [Google Scholar]
  45. Nakata H., Kannan K., Jones P. D., Giesy J. P. 2005; Determination of fluoroquinolone antibiotics in wastewater effluents by liquid chromatography-mass spectrometry and fluorescence detection. Chemosphere 58:759–766
    [Google Scholar]
  46. Nüßlein K., Maris D., Timmis K., Dwyer D. F. 1992; Expression and transfer of engineered catabolic pathways harbored by Pseudomonas spp. introduced into activated sludge microcosms. Appl Environ Microbiol 58:3380–3386
    [Google Scholar]
  47. Poirel L., Marqué S., Héritier C., Segonds C., Chabanon G., Nordmann P. 2005; OXA-58, a novel class D β-lactamase involved in resistance to carbapenems in Acinetobacter baumannii . Antimicrob Agents Chemother 49:202–208
    [Google Scholar]
  48. Prasher D. C., Eckenrode V. K., Ward W. W., Prendergast F. G., Cormier M. J. 1992; Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111:229–233
    [Google Scholar]
  49. Rowe-Magnus D. A., Mazel D. 1999; Resistance gene capture. Curr Opin Microbiol 2:483–488
    [Google Scholar]
  50. Rozen S., Skaletsky H. 2000; Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386
    [Google Scholar]
  51. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  52. Schlüter A., Heuer H., Szczepanowski R., Forney L. J., Thomas C. M., Pühler A., Top E. M. 2003; The 64 508 bp IncP-1 β antibiotic multiresistance plasmid pB10 isolated from a waste-water treatment plant provides evidence for recombination between members of different branches of the IncP-1 β group. Microbiology 149:3139–3153
    [Google Scholar]
  53. Schlüter A., Heuer H., Szczepanowski R., Poler S. M., Schneiker S., Pühler A., Top E. M. 2005; Plasmid pB8 is closely related to the prototype IncP-1 β plasmid R751 but transfers poorly to Escherichia coli and carries a new transposon encoding a small multidrug resistance efflux protein. Plasmid 54:135–148
    [Google Scholar]
  54. Schlüter A., Szczepanowski R., Kurz N., Schneiker S., Krahn I., Pühler A. 2007a; Erythromycin resistance-conferring plasmid pRSB105, isolated from a sewage treatment plant, harbors a new macrolide resistance determinant, an integron-containing Tn 402-like element, and a large region of unknown function. Appl Environ Microbiol 73:1952–1960
    [Google Scholar]
  55. Schlüter A., Krahn I., Kollin F., Bönemann G., Stiens M., Szczepanowski R., Schneiker S., Pühler A. 2007b; IncP-1 β plasmid pGNB1 isolated from a bacterial community from a wastewater treatment plant mediates decolorization of triphenylmethane dyes. Appl Environ Microbiol 73:6345–6350
    [Google Scholar]
  56. Schlüter A., Krause L., Szczepanowski R., Goesmann A., Pühler A. 2008; Genetic diversity and composition of a plasmid metagenome from a wastewater treatment plant. J Biotechnol 136:65–76
    [Google Scholar]
  57. Schwartz T., Kohnen W., Jansen B., Obst O. 2003; Detection of antibiotic-resistant bacteria and their resistance genes in wastewater, surface water, and drinking water biofilms. FEMS Microbiol Ecol 43:325–335
    [Google Scholar]
  58. Seveno N. A., Kallifidas D., Smalla K., van Elsas J. D., Collard J. M., Karagouni A. D., Wellington E. M. H. 2002; Occurrence and reservoirs of antibiotic resistance genes in the environment. Rev Med Microbiol 13:15–27
    [Google Scholar]
  59. Smith M. S., Yang R. K., Knapp C. W., Niu Y., Peak N., Hanfelt M. M., Galland J. C., Graham D. W. 2004; Quantification of tetracycline resistance genes in feedlot lagoons by real-time PCR. Appl Environ Microbiol 70:7372–7377
    [Google Scholar]
  60. Stiens M., Becker A., Bekel T., Gödde V., Goesmann A., Niehaus K., Schneiker-Bekel S., Selbitschka W., Weidner S. other authors 2008; Comparative genomic hybridisation and ultrafast pyrosequencing revealed remarkable differences between the Sinorhizobium meliloti genomes of the model strain Rm1021 and the field isolate SM11. J Biotechnol 136:31–37
    [Google Scholar]
  61. Szczepanowski R., Krahn I., Linke B., Goesmann A., Pühler A., Schlüter A. 2004; Antibiotic multiresistance plasmid pRSB101 isolated from a wastewater treatment plant is related to plasmids residing in phytopathogenic bacteria and carries eight different resistance determinants including a multidrug transport system. Microbiology 150:3613–3630
    [Google Scholar]
  62. Szczepanowski R., Braun S., Riedel V., Schneiker S., Krahn I., Pühler A., Schlüter A. 2005; The 120 592 bp IncF plasmid pRSB107 isolated from a sewage-treatment plant encodes nine different antibiotic-resistance determinants, two iron-acquisition systems and other putative virulence-associated functions. Microbiology 151:1095–1111
    [Google Scholar]
  63. Szczepanowski R., Krahn I., Bohn N., Pühler A., Schlüter A. 2007; Novel macrolide resistance module carried by the IncP-1 β resistance plasmid pRSB111, isolated from a wastewater treatment plant. Antimicrob Agents Chemother 51:673–678
    [Google Scholar]
  64. Szczepanowski R., Bekel T., Goesmann A., Krause L., Krömeke H., Kaiser O., Eichler W., Pühler A., Schlüter A. 2008; Insight into the plasmid metagenome of wastewater treatment plant bacteria showing reduced susceptibility to antimicrobial drugs analysed by the 454-pyrosequencing technology. J Biotechnol 136:54–64
    [Google Scholar]
  65. Tauch A., Schlüter A., Bischoff N., Goesmann A., Meyer F., Pühler A. 2003; The 79,370 bp conjugative plasmid pB4 consists of an IncP-1 β backbone loaded with a chromate resistance transposon, the strA- strB streptomycin resistance gene pair, the oxacillinase gene bla NPS-1, and a tripartite antibiotic efflux system of the resistance-nodulation-division family. Mol Genet Genomics 268:570–584
    [Google Scholar]
  66. Tennstedt T., Szczepanowski R., Braun S., Pühler A., Schlüter A. 2003; Occurrence of integron-associated resistance gene cassettes located on antibiotic resistance plasmids isolated from a wastewater treatment plant. FEMS Microbiol Ecol 45:239–252
    [Google Scholar]
  67. Tennstedt T., Szczepanowski R., Krahn I., Pühler A., Schlüter A. 2005; Sequence of the 68,869 bp IncP-1 α plasmid pTB11 from a waste-water treatment plant reveals a highly conserved backbone, a Tn 402-like integron and other transposable elements. Plasmid 53:218–238
    [Google Scholar]
  68. Toleman M. A., Biedenbach D., Bennett D., Jones R. N., Walsh T. R. 2003; Genetic characterization of a novel metallo-beta-lactamase gene, bla IMP-13, harboured by a novel Tn 5051-type transposon disseminating carbapenemase genes in Europe: report from the SENTRY worldwide antimicrobial surveillance programme. J Antimicrob Chemother 52:583–590
    [Google Scholar]
  69. Volkmann H., Schwartz T., Bischoff P., Kirchen S., Obst U. 2004; Detection of clinically relevant antibiotic-resistance genes in municipal wastewater using real-time PCR (TaqMan. J Microbiol Methods 56:277–286
    [Google Scholar]
  70. Vourli S., Giakkoupi P., Miriagou V., Tzelepi E., Vatopoulos A. C., Tzouvelekis L. S. 2004; Novel GES/IBC extended-spectrum β-lactamase variants with carbapenemase activity in clinical enterobacteria. FEMS Microbiol Lett 234:209–213
    [Google Scholar]
  71. Wassenaar T. M. 2005; Use of antimicrobial agents in veterinary medicine and implications for human health. Crit Rev Microbiol 31:155–169
    [Google Scholar]
  72. Xiong J., Hynes M. F., Ye H., Chen H., Yang Y., M'Zali F., Hawkey P. M. 2006; bla IMP-9 and its association with large plasmids carried by Pseudomonas aeruginosa isolates from the People's Republic of China. Antimicrob Agents Chemother 50:355–358
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.028233-0
Loading
/content/journal/micro/10.1099/mic.0.028233-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed