1887

Abstract

This paper shows that compounds in defined growth media strongly influence the expression of the effectors of virulence in the human invasive pathogen . Ornithine in conjunction with uracil reduces the haemolytic ability of wild-type cultures more than 20-fold and the expression of the type III secretion system more than 8-fold, as monitored by an  : :  transcriptional reporter. gene expression is further decreased by the presence of methionine or branched-chain amino acids (15-fold or 25-fold at least, respectively). Lysine and a few other aminated metabolites (cadaverine, homoserine and diaminopimelate) counteract the ornithine-mediated inhibition of haemolytic activity and of the expression of a transcriptional activator reporter. The complete abolition of invasion of HeLa cells by wild-type bacteria by ornithine, uracil, methionine or branched-chain amino acids establishes that these metabolites are powerful effectors of virulence. These findings provide a direct connection between metabolism and virulence in . The inhibitory potential exhibited by the nutritional environment is stronger than temperature, the classical environmental effector of virulence. The implications and practical application of this finding in prophylaxis and treatment of shigellosis are discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.028191-0
2009-08-01
2020-07-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/8/2498.html?itemId=/content/journal/micro/10.1099/mic.0.028191-0&mimeType=html&fmt=ahah

References

  1. Beatty W. L., Belanger T. A., Desai A. A., Morrison R. P., Byrne G. I.. 1994; Tryptophan depletion as a mechanism of gamma interferon-mediated chlamydial persistence. Infect Immun62:3705–3711
    [Google Scholar]
  2. Berger E. A., Heppel L. A.. 1972; A binding protein involved in the transport of cystine and diaminopimelic acid in Escherichia coli. J Biol Chem247:7684–7694
    [Google Scholar]
  3. Byrne G. I., Lehmann L. K., Landry G. J.. 1986; Induction of tryptophan catabolism is the mechanism for gamma-interferon-mediated inhibition of intracellular Chlamydia psittaci replication in T24 cells. Infect Immun53:347–351
    [Google Scholar]
  4. Casalino M., Latella M. C., Prosseda G., Colonna B.. 2003; CadC is the preferential target of a convergent evolution driving enteroinvasive Escherichia coli toward a lysine decarboxylase-defective phenotype. Infect Immun71:5472–5479
    [Google Scholar]
  5. Celis T. F., Rosenfeld H. J., Maas W. K.. 1973; Mutant of Escherichia coli K-12 defective in the transport of basic amino acids. J Bacteriol116:619–626
    [Google Scholar]
  6. Cersini A., Salvia A. M., Bernardini M. L.. 1998; Intracellular multiplication and virulence of Shigella flexneri auxotrophic mutants. Infect Immun66:549–557
    [Google Scholar]
  7. Domergue R., Castaño I., De Las Peñas A., Zupancic M., Lockatell V., Hebel J. R., Johnson D., Cormack B. P.. 2005; Nicotinic acid limitation regulates silencing of Candida adhesins during UTI. Science308:866–870
    [Google Scholar]
  8. Dorman C. J., Porter M. E.. 1998; The Shigella virulence gene regulatory cascade: a paradigm of bacterial gene control mechanisms. Mol Microbiol29:677–684
    [Google Scholar]
  9. Durand J. M., Björk G. R.. 2003; Putrescine or a combination of methionine and arginine restores virulence gene expression in a tRNA modification-deficient mutant of Shigella flexneri: a possible role in adaptation of virulence. Mol Microbiol47:519–527
    [Google Scholar]
  10. Durand J. M., Okada N., Tobe T., Watarai M., Fukuda I., Suzuki T., Nakata N., Komatsu K., Yoshikawa M., Sasakawa C.. 1994; vacC, a virulence-associated chromosomal locus of Shigella flexneri, is homologous to tgt, a gene encoding tRNA-guanine transglycosylase (Tgt) of Escherichia coli K-12. J Bacteriol176:4627–4634
    [Google Scholar]
  11. Durand J. M. B., Björk G. R., Kuwae A., Yoshikawa M., Sasakawa C.. 1997; The modified nucleoside 2-methylthio- N-6-isopentenyladenosine in tRNA of Shigella flexneri is required for expression of virulence genes. J Bacteriol179:5777–5782
    [Google Scholar]
  12. Durand J. M., Dagberg B., Uhlin B. E., Björk G. R.. 2000; Transfer RNA modification, temperature and DNA superhelicity have a common target in the regulatory network of the virulence of Shigella flexneri: the expression of the virF gene. Mol Microbiol35:924–935
    [Google Scholar]
  13. Emilsson V., Kurland C. G.. 1990; Growth rate dependence of transfer RNA abundance in Escherichia coli. EMBO J9:4359–4366
    [Google Scholar]
  14. Formal S. B., Gemski P., Baron L. S., Labrec E. H.. 1971; A chromosomal locus which controls the ability of Shigella flexneri to evoke keratoconjunctivitis. Infect Immun3:73–79
    [Google Scholar]
  15. Fox B. A., Bzik D. J.. 2002; De novo pyrimidine biosynthesis is required for virulence of Toxoplasma gondii. Nature415:926–929
    [Google Scholar]
  16. Gehrke C. W., Kuo K. C.. 1989; Ribonucleoside analysis by reversed-phase high-performance liquid chromatography. J Chromatogr471:3–36
    [Google Scholar]
  17. Gehrke C. W., Kuo K. C., McCune R. A., Gerhardt K. O., Agris P. F.. 1982; Quantitative enzymatic hydrolysis of tRNAs: reversed-phase high-performance liquid chromatography of tRNA nucleosides. J Chromatogr230:297–308
    [Google Scholar]
  18. Glansdorff N.. others 1996; Biosynthesis of arginine and polyamines. In Escherichia coli and Salmonella: Cellular and Molecular Biology , 2nd edn. pp408–433 Edited by Neidhardt F. C. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  19. Hale T. L., Formal S. B.. 1981; Protein synthesis in HeLa or Henle 407 cells infected with Shigella dysenteriae 1, Shigella flexneri 2a, or Salmonella typhimurium W118. Infect Immun32:137–144
    [Google Scholar]
  20. Hebert M. D., Houghton J. E.. 1997; Regulation of ornithine utilization in Pseudomonas aeruginosa (PAO1) is mediated by a transcriptional regulator, OruR. J Bacteriol179:7834–7842
    [Google Scholar]
  21. Karlsson S., Burman L. G., Akerlund T.. 1999; Suppression of toxin production in Clostridium difficile VPI 10463 by amino acids. Microbiology145:1683–1693
    [Google Scholar]
  22. Mac Síomóin R. A., Nakata N., Murai T., Yoshikawa M., Tsuji H., Sasakawa C.. 1996; Identification and characterization of ispA, a Shigella flexneri chromosomal gene essential for normal in vivo cell division and intracellular spreading. Mol Microbiol19:599–609
    [Google Scholar]
  23. Mahan M. J., Tobias J. W., Slauch J. M., Hanna P. C., Collier R. J., Mekalanos J. J.. 1995; Antibiotic-based selection for bacterial genes that are specifically induced during infection of a host. Proc Natl Acad Sci U S A92:669–673
    [Google Scholar]
  24. Maurelli A. T., Sansonetti P. J.. 1988; Identification of a chromosomal gene controlling temperature-regulated expression of Shigella virulence. Proc Natl Acad Sci U S A85:2820–2824
    [Google Scholar]
  25. Maurelli A. T., Blackmon B., Curtiss R.. 1984; Temperature-dependent expression of virulence genes in Shigella species. Infect Immun43:195–201
    [Google Scholar]
  26. Maurelli A. T., Fernández R. E., Bloch C. A., Rode C. K., Fasano A.. 1998; “Black holes” and bacterial pathogenicity: a large genomic deletion that enhances the virulence of Shigella spp. and enteroinvasive Escherichia coli. Proc Natl Acad Sci U S A95:3943–3948
    [Google Scholar]
  27. Miller J. H.. 1972; Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  28. Miller V. L., Mekalanos J. J.. 1988; A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J Bacteriol170:2575–2583
    [Google Scholar]
  29. Miller J. F., Mekalanos J. J., Falkow S.. 1989; Coordinate regulation and sensory transduction in the control of bacterial virulence. Science243:916–922
    [Google Scholar]
  30. Nakata N., Sasakawa C., Okada N., Tobe T., Fukuda I., Suzuki T., Komatsu K., Yoshikawa M.. 1992; Identification and characterization of virK, a virulence-associated large plasmid gene essential for intercellular spreading of Shigella flexneri. Mol Microbiol6:2387–2395
    [Google Scholar]
  31. Nakayama S., Watanabe H.. 1995; Involvement of cpxA, a sensor of a two-component regulatory system, in the pH-dependent regulation of expression of Shigella sonnei virF gene. J Bacteriol177:5062–5069
    [Google Scholar]
  32. Neidhardt F. C., Bloch P. L., Smith D. F.. 1974; Culture medium for enterobacteria. J Bacteriol119:736–747
    [Google Scholar]
  33. Neidhardt F. C., Bloch P. L., Pedersen S., Reeh S.. 1977; Chemical measurement of steady-state levels of ten aminoacyl-transfer ribonucleic acid synthetases in Escherichia coli. J Bacteriol129:378–387
    [Google Scholar]
  34. Neidhardt F. C., Curtiss R. III, Ingraham J. L., Lin E. C. C., Low K. B. Jr, Magasanik B., Reznikoff W. S., Riley M., Schaechter M., Umbarger H. E.. 1996; Escherichia coli and Salmonella: Cellular and Molecular Biology , 2nd edn. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  35. Noriega F. R., Losonsky G., Lauderbaugh C., Liao F. M., Wang J. Y., Levine M. M.. 1996; Engineered Δ guaB-A Δ virG Shigella flexneri 2a strain CVD 1205: construction, safety, immunogenicity, and potential efficacy as a mucosal vaccine. Infect Immun64:3055–3061
    [Google Scholar]
  36. Ogawa M., Sasakawa C.. 2006; Intracellular survival of Shigella. Cell Microbiol8:177–184
    [Google Scholar]
  37. Okada N., Sasakawa C., Tobe T., Yamada M., Nagai S., Talukder K. A., Komatsu K., Kanegasaki S., Yoshikawa M.. 1991; Virulence-associated chromosomal loci of Shigella flexneri identified by random Tn 5 insertion mutagenesis. Mol Microbiol5:187–195
    [Google Scholar]
  38. Pál T., Formal S. B., Hale T. L.. 1989; Characterization of virulence marker antigen of Shigella spp. and enteroinvasive Escherichia coli. J Clin Microbiol27:561–563
    [Google Scholar]
  39. Pasteur L.. 1880; De l'attenuation du virus du choléra des poules. C R Acad Sci91:673–680
    [Google Scholar]
  40. Pfefferkorn E. R.. 1984; Interferon gamma blocks the growth of Toxoplasma gondii in human fibroblasts by inducing the host cells to degrade tryptophan. Proc Natl Acad Sci U S A81:908–912
    [Google Scholar]
  41. Porter M. E., Dorman C. J.. 1994; A role for H-NS in the thermo-osmotic regulation of virulence gene expression in Shigella flexneri. J Bacteriol176:4187–4191
    [Google Scholar]
  42. Porter M. E., Dorman C. J.. 1997; Differential regulation of the plasmid-encoded genes in the Shigella flexneri virulence regulon. Mol Gen Genet256:93–103
    [Google Scholar]
  43. Powell B. S., Court D. L.. 1998; Control of ftsZ expression, cell division, and glutamine metabolism in Luria-Bertani medium by the alarmone ppGpp in Escherichia coli. J Bacteriol180:1053–1062
    [Google Scholar]
  44. Prunier A. L., Schuch R., Fernández R. E., Mumy K. L., Kohler H., McCormick B. A., Maurelli A. T.. 2007; nadA and nadB of Shigella flexneri 5a are antivirulence loci responsible for the synthesis of quinolinate, a small molecule inhibitor of Shigella pathogenicity. Microbiology153:2363–2372
    [Google Scholar]
  45. Rietsch A., Mekalanos J. J.. 2006; Metabolic regulation of type III secretion gene expression in Pseudomonas aeruginosa. Mol Microbiol59:807–820
    [Google Scholar]
  46. Rothman S. W., Corwin L. M.. 1972; Factors affecting virulence of Shigella flexneri: defective methionine synthesis in an Escherichia coli-Shigella hybrid. J Bacteriol112:176–182
    [Google Scholar]
  47. Sansonetti P. J., Ryter A., Clerc P., Maurelli A. T., Mounier J.. 1986; Multiplication of Shigella flexneri within HeLa cells: lysis of the phagocytic vacuole and plasmid-mediated contact hemolysis. Infect Immun51:461–469
    [Google Scholar]
  48. Sasakawa C., Kamata K., Sakai T., Murayama S. Y., Makino S., Yoshikawa M.. 1986; Molecular alteration of the 140-megadalton plasmid associated with loss of virulence and Congo red binding activity in Shigella flexneri. Infect Immun51:470–475
    [Google Scholar]
  49. Schuhmacher D. A., Klose K. E.. 1999; Environmental signals modulate ToxT-dependent virulence factor expression in Vibrio cholerae. J Bacteriol181:1508–1514
    [Google Scholar]
  50. Tobe T., Nagai S., Okada N., Adler B., Yoshikawa M., Sasakawa C.. 1991; Temperature-regulated expression of invasion genes in Shigella flexneri is controlled through the transcriptional activation of the virB gene on the large plasmid. Mol Microbiol5:887–893
    [Google Scholar]
  51. Xu F., Ulmer J. B.. 2003; Attenuated Salmonella and Shigella as carriers for DNA vaccines. J Drug Target11:481–488
    [Google Scholar]
  52. Zagaglia C., Casalino M., Colonna B., Conti C., Calconi A., Nicoletti M.. 1991; Virulence plasmids of enteroinvasive Escherichia coli and Shigella flexneri integrate into a specific site on the host chromosome: integration greatly reduces expression of plasmid-carried virulence genes. Infect Immun59:792–799
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.028191-0
Loading
/content/journal/micro/10.1099/mic.0.028191-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error