1887

Abstract

encodes a number of important genes that aid in survival during times of oxidative stress. The same immune cells capable of oxygen-dependent killing mechanisms also have the capacity to generate reactive nitrogen species (RNS) that may function antimicrobially. F62 and eight additional gonococcal strains displayed a high level of resistance to peroxynitrite, while and showed a four- to seven-log and a four-log decrease in viability, respectively. Mutation of gonococcal orthologues that are known or suspected to be involved in RNS defence in other bacteria ( and ) resulted in no loss of viability, suggesting that has a novel mechanism of resistance to peroxynitrite. Whole-cell extracts of F62 prevented the oxidation of dihydrorhodamine, and decomposition of peroxynitrite was not dependent on or . F62 grown in co-culture with strain DH10B was shown to protect viability 10-fold. Also, peroxynitrite treatment of F62 did not result in accumulation of nitrated proteins, suggesting that an active peroxynitrite reductase is responsible for peroxynitrite decomposition rather than a protein sink for amino acid modification.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.028092-0
2009-08-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/8/2532.html?itemId=/content/journal/micro/10.1099/mic.0.028092-0&mimeType=html&fmt=ahah

References

  1. Aktan, F. ( 2004; ). iNOS-mediated nitric oxide production and its regulation. Life Sci 75, 639–653.[CrossRef]
    [Google Scholar]
  2. Alam, M. S., Akaike, T., Okamoto, S., Kubota, T., Yoshitake, J., Sawa, T., Miyamoto, Y., Tamura, F. & Maeda, H. ( 2002; ). Role of nitric oxide in host defense in murine salmonellosis as a function of its antibacterial and antiapoptotic activities. Infect Immun 70, 3130–3142.[CrossRef]
    [Google Scholar]
  3. Alam, M. S., Zaki, M. H., Yoshitake, J., Akuta, T., Ezaki, T. & Akaike, T. ( 2006; ). Involvement of Salmonella enterica serovar Typhi RpoS in resistance to NO-mediated host defense against serovar Typhi infection. Microb Pathog 40, 116–125.[CrossRef]
    [Google Scholar]
  4. Alcorn, T. M., Zheng, H. Y., Gunther, M. R., Hassett, D. J. & Cohen, M. S. ( 1994; ). Variation in hydrogen peroxide sensitivity between different strains of Neisseria gonorrhoeae is dependent on factors in addition to catalase activity. Infect Immun 62, 2138–2140.
    [Google Scholar]
  5. Alvarez, B. & Radi, R. ( 2003; ). Peroxynitrite reactivity with amino acids and proteins. Amino Acids 25, 295–311.[CrossRef]
    [Google Scholar]
  6. Archibald, F. S. & Duong, M. N. ( 1986; ). Superoxide dismutase and oxygen toxicity defenses in the genus Neisseria. Infect Immun 51, 631–641.
    [Google Scholar]
  7. Barth, K. & Clark, V. L. ( 2008; ). Differences in nitric oxide steady states between arginine, hypoxanthine, uracil auxotrophs (AHU) and non-AHU strains of Neisseria gonorrhoeae during anaerobic respiration in the presence of nitrite. Can J Microbiol 54, 639–646.[CrossRef]
    [Google Scholar]
  8. Beckman, J. S. & Koppenol, W. H. ( 1996; ). Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 271, C1424–C1437.
    [Google Scholar]
  9. Bogdan, C. ( 2001; ). Nitric oxide and the immune response. Nat Immunol 2, 907–916.[CrossRef]
    [Google Scholar]
  10. Bogdan, C., Rollinghoff, M. & Diefenbach, A. ( 2000; ). Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity. Curr Opin Immunol 12, 64–76.[CrossRef]
    [Google Scholar]
  11. Braun, C. & Zumft, W. G. ( 1991; ). Marker exchange of the structural genes for nitric oxide reductase blocks the denitrification pathway of Pseudomonas stutzeri at nitric oxide. J Biol Chem 266, 22785–22788.
    [Google Scholar]
  12. Bryk, R., Griffin, P. & Nathan, C. ( 2000; ). Peroxynitrite reductase activity of bacterial peroxiredoxins. Nature 407, 211–215.[CrossRef]
    [Google Scholar]
  13. Burney, S., Caulfield, J. L., Niles, J. C., Wishnok, J. S. & Tannenbaum, S. R. ( 1999; ). The chemistry of DNA damage from nitric oxide and peroxynitrite. Mutat Res 424, 37–49.[CrossRef]
    [Google Scholar]
  14. Cardinale, J. A. & Clark, V. L. ( 2005; ). Determinants of nitric oxide steady-state levels during anaerobic respiration by Neisseria gonorrhoeae. Mol Microbiol 58, 177–188.[CrossRef]
    [Google Scholar]
  15. Carreras, M. C., Pargament, G. A., Catz, S. D., Poderoso, J. J. & Boveris, A. ( 1994; ). Kinetics of nitric oxide and hydrogen peroxide production and formation of peroxynitrite during the respiratory burst of human neutrophils. FEBS Lett 341, 65–68.[CrossRef]
    [Google Scholar]
  16. Casey, S. G., Veale, D. R. & Smith, H. ( 1979; ). Demonstration of intracellular growth of gonococci in human phagocytes using spectinomycin to kill extracellular organisms. J Gen Microbiol 113, 395–398.[CrossRef]
    [Google Scholar]
  17. Casey, S. G., Shafer, W. M. & Spitznagel, J. K. ( 1986; ). Neisseria gonorrhoeae survive intraleukocytic oxygen-independent antimicrobial capacities of anaerobic and aerobic granulocytes in the presence of pyocin lethal for extracellular gonococci. Infect Immun 52, 384–389.
    [Google Scholar]
  18. Chakravortty, D. & Hensel, M. ( 2003; ). Inducible nitric oxide synthase and control of intracellular bacterial pathogens. Microbes Infect 5, 621–627.[CrossRef]
    [Google Scholar]
  19. Chakravortty, D., Hansen-Wester, I. & Hensel, M. ( 2002; ). Salmonella pathogenicity island 2 mediates protection of intracellular Salmonella from reactive nitrogen intermediates. J Exp Med 195, 1155–1166.[CrossRef]
    [Google Scholar]
  20. Chan, E. D., Chan, J. & Schluger, N. W. ( 2001; ). What is the role of nitric oxide in murine and human host defense against tuberculosis? Current knowledge. Am J Respir Cell Mol Biol 25, 606–612.[CrossRef]
    [Google Scholar]
  21. Cowley, S. C., Myltseva, S. V. & Nano, F. E. ( 1996; ). Phase variation in Francisella tularensis affecting intracellular growth, lipopolysaccharide antigenicity and nitric oxide production. Mol Microbiol 20, 867–874.[CrossRef]
    [Google Scholar]
  22. Cramm, R., Siddiqui, R. A. & Friedrich, B. ( 1997; ). Two isofunctional nitric oxide reductases in Alcaligenes eutrophus H16. J Bacteriol 179, 6769–6777.
    [Google Scholar]
  23. De Groote, M. A., Granger, D., Xu, Y., Campbell, G., Prince, R. & Fang, F. C. ( 1995; ). Genetic and redox determinants of nitric oxide cytotoxicity in a Salmonella typhimurium model. Proc Natl Acad Sci U S A 92, 6399–6403.[CrossRef]
    [Google Scholar]
  24. De Groote, M. A., Ochsner, U. A., Shiloh, M. U., Nathan, C., McCord, J. M., Dinauer, M. C., Libby, S. J., Vazquez-Torres, A., Xu, Y. & Fang, F. C. ( 1997; ). Periplasmic superoxide dismutase protects Salmonella from products of phagocyte NADPH-oxidase and nitric oxide synthase. Proc Natl Acad Sci U S A 94, 13997–14001.[CrossRef]
    [Google Scholar]
  25. Dyet, K. & Moir, J. ( 2006; ). Effect of combined oxidative and nitrosative stress on Neisseria meningitidis. Biochem Soc Trans 34, 197–199.[CrossRef]
    [Google Scholar]
  26. Edwards, J. L. & Apicella, M. A. ( 2004; ). The molecular mechanisms used by Neisseria gonorrhoeae to initiate infection differ between men and women. Clin Microbiol Rev 17, 965–981.[CrossRef]
    [Google Scholar]
  27. Ehrt, S., Shiloh, M. U., Ruan, J., Choi, M., Gunzburg, S., Nathan, C., Xie, Q. & Riley, L. W. ( 1997; ). A novel antioxidant gene from Mycobacterium tuberculosis. J Exp Med 186, 1885–1896.[CrossRef]
    [Google Scholar]
  28. Ezraty, B., Aussel, L. & Barras, F. ( 2005; ). Methionine sulfoxide reductases in prokaryotes. Biochim Biophys Acta 1703, 221–229.[CrossRef]
    [Google Scholar]
  29. Fang, F. C. ( 2004; ). Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat Rev Microbiol 2, 820–832.[CrossRef]
    [Google Scholar]
  30. Fu, H. S., Hassett, D. J. & Cohen, M. S. ( 1989; ). Oxidant stress in Neisseria gonorrhoeae: adaptation and effects on l-(+)-lactate dehydrogenase activity. Infect Immun 57, 2173–2178.
    [Google Scholar]
  31. Gobert, A. P., McGee, D. J., Akhtar, M., Mendz, G. L., Newton, J. C., Cheng, Y., Mobley, H. L. & Wilson, K. T. ( 2001; ). Helicobacter pylori arginase inhibits nitric oxide production by eukaryotic cells: a strategy for bacterial survival. Proc Natl Acad Sci U S A 98, 13844–13849.[CrossRef]
    [Google Scholar]
  32. Goldstein, S. & Merenyi, G. ( 2008; ). The chemistry of peroxynitrite: implications for biological activity. Methods Enzymol 436, 49–61.
    [Google Scholar]
  33. Green, S. J., Meltzer, M. S., Hibbs, J. B., Jr & Nacy, C. A. ( 1990; ). Activated macrophages destroy intracellular Leishmania major amastigotes by an l-arginine-dependent killing mechanism. J Immunol 144, 278–283.
    [Google Scholar]
  34. Hampton, M. B., Kettle, A. J. & Winterbourn, C. C. ( 1998; ). Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood 92, 3007–3017.
    [Google Scholar]
  35. Hassett, D. J., Charniga, L. & Cohen, M. S. ( 1990; ). recA and catalase in H2O2-mediated toxicity in Neisseria gonorrhoeae. J Bacteriol 172, 7293–7296.
    [Google Scholar]
  36. Hedges, S. R., Sibley, D. A., Mayo, M. S., Hook, E. W., III & Russell, M. W. ( 1998; ). Cytokine and antibody responses in women infected with Neisseria gonorrhoeae: effects of concomitant infections. J Infect Dis 178, 742–751.[CrossRef]
    [Google Scholar]
  37. Hillis, S. D., Nakashima, A., Marchbanks, P. A., Addiss, D. G. & Davis, J. P. ( 1994; ). Risk factors for recurrent Chlamydia trachomatis infections in women. Am J Obstet Gynecol 170, 801–806.[CrossRef]
    [Google Scholar]
  38. Householder, T. C., Belli, W. A., Lissenden, S., Cole, J. A. & Clark, V. L. ( 1999; ). cis- and trans-acting elements involved in regulation of aniA, the gene encoding the major anaerobically induced outer membrane protein in Neisseria gonorrhoeae. J Bacteriol 181, 541–551.
    [Google Scholar]
  39. Householder, T. C., Fozo, E. M., Cardinale, J. A. & Clark, V. L. ( 2000; ). Gonococcal nitric oxide reductase is encoded by a single gene, norB, which is required for anaerobic growth and is induced by nitric oxide. Infect Immun 68, 5241–5246.[CrossRef]
    [Google Scholar]
  40. Igietseme, J. U., Uriri, I. M., Chow, M., Abe, E. & Rank, R. G. ( 1997; ). Inhibition of intracellular multiplication of human strains of Chlamydia trachomatis by nitric oxide. Biochem Biophys Res Commun 232, 595–601.[CrossRef]
    [Google Scholar]
  41. Ischiropoulos, H., Gow, A., Thom, S. R., Kooy, N. W., Royall, J. A. & Crow, J. P. ( 1999; ). Detection of reactive nitrogen species using 2,7-dichlorodihydrofluorescein and dihydrorhodamine 123. Methods Enzymol 301, 367–373.
    [Google Scholar]
  42. Jeong, W., Cha, M. K. & Kim, I. H. ( 2000; ). Thioredoxin-dependent hydroperoxide peroxidase activity of bacterioferritin comigratory protein (BCP) as a new member of the thiol-specific antioxidant protein (TSA)/alkyl hydroperoxide peroxidase C (AhpC) family. J Biol Chem 275, 2924–2930.[CrossRef]
    [Google Scholar]
  43. Kellogg, D. S., Jr, Peacock, W. L., Jr, Deacon, W. E., Brown, L. & Pirkle, D. I. ( 1963; ). Neisseria gonorrhoeae. I. Virulence genetically linked to clonal variation. J Bacteriol 85, 1274–1279.
    [Google Scholar]
  44. Kooy, N. W., Royall, J. A., Ischiropoulos, H. & Beckman, J. S. ( 1994; ). Peroxynitrite-mediated oxidation of dihydrorhodamine 123. Free Radic Biol Med 16, 149–156.[CrossRef]
    [Google Scholar]
  45. Kuwahara, H., Miyamoto, Y., Akaike, T., Kubota, T., Sawa, T., Okamoto, S. & Maeda, H. ( 2000; ). Helicobacter pylori urease suppresses bactericidal activity of peroxynitrite via carbon dioxide production. Infect Immun 68, 4378–4383.[CrossRef]
    [Google Scholar]
  46. Liaudet, L., Soriano, F. G. & Szabo, C. ( 2000; ). Biology of nitric oxide signaling. Crit Care Med 28, N37–N52.[CrossRef]
    [Google Scholar]
  47. MacMicking, J. D., Nathan, C., Hom, G., Chartrain, N., Fletcher, D. S., Trumbauer, M., Stevens, K., Xie, Q. W., Sokol, K. & other authors ( 1995; ). Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase. Cell 81, 641–650.[CrossRef]
    [Google Scholar]
  48. MacMicking, J., Xie, Q. W. & Nathan, C. ( 1997; ). Nitric oxide and macrophage function. Annu Rev Immunol 15, 323–350.[CrossRef]
    [Google Scholar]
  49. Mayer, J., Woods, M. L., Vavrin, Z. & Hibbs, J. B., Jr ( 1993; ). Gamma interferon-induced nitric oxide production reduces Chlamydia trachomatis infectivity in McCoy cells. Infect Immun 61, 491–497.
    [Google Scholar]
  50. Moskovitz, J. ( 2005; ). Methionine sulfoxide reductases: ubiquitous enzymes involved in antioxidant defense, protein regulation, and prevention of aging-associated diseases. Biochim Biophys Acta 1703, 213–219.[CrossRef]
    [Google Scholar]
  51. Overton, T. W., Whitehead, R., Li, Y., Snyder, L. A., Saunders, N. J., Smith, H. & Cole, J. A. ( 2006; ). Coordinated regulation of the Neisseria gonorrhoeae-truncated denitrification pathway by the nitric oxide-sensitive repressor, NsrR, and nitrite-insensitive NarQ–NarP. J Biol Chem 281, 33115–33126.[CrossRef]
    [Google Scholar]
  52. Overton, T. W., Justino, M. C., Li, Y., Baptista, J. M., Melo, A. M., Cole, J. A. & Saraiva, L. M. ( 2008; ). Widespread distribution in pathogenic bacteria of di-iron proteins that repair oxidative and nitrosative damage to iron-sulfur centers. J Bacteriol 190, 2004–2013.[CrossRef]
    [Google Scholar]
  53. Pacher, P., Beckman, J. S. & Liaudet, L. ( 2007; ). Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87, 315–424.[CrossRef]
    [Google Scholar]
  54. Poole, L. B. ( 2005; ). Bacterial defenses against oxidants: mechanistic features of cysteine-based peroxidases and their flavoprotein reductases. Arch Biochem Biophys 433, 240–254.[CrossRef]
    [Google Scholar]
  55. Poole, R. K. & Hughes, M. N. ( 2000; ). New functions for the ancient globin family: bacterial responses to nitric oxide and nitrosative stress. Mol Microbiol 36, 775–783.[CrossRef]
    [Google Scholar]
  56. Radi, R., Beckman, J. S., Bush, K. M. & Freeman, B. A. ( 1991a; ). Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J Biol Chem 266, 4244–4250.
    [Google Scholar]
  57. Radi, R., Beckman, J. S., Bush, K. M. & Freeman, B. A. ( 1991b; ). Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch Biochem Biophys 288, 481–487.[CrossRef]
    [Google Scholar]
  58. Reiter, C. D., Teng, R. J. & Beckman, J. S. ( 2000; ). Superoxide reacts with nitric oxide to nitrate tyrosine at physiological pH via peroxynitrite. J Biol Chem 275, 32460–32466.[CrossRef]
    [Google Scholar]
  59. Rest, R. F., Fischer, S. H., Ingham, Z. Z. & Jones, J. F. ( 1982; ). Interactions of Neisseria gonorrhoeae with human neutrophils: effects of serum and gonococcal opacity on phagocyte killing and chemiluminescence. Infect Immun 36, 737–744.
    [Google Scholar]
  60. Roos, D., de Boer, M., Kuribayashi, F., Meischl, C., Weening, R. S., Segal, A. W., Ahlin, A., Nemet, K., Hossle, J. P. & other authors ( 1996; ). Mutations in the X-linked and autosomal recessive forms of chronic granulomatous disease. Blood 87, 1663–1681.
    [Google Scholar]
  61. Rouhier, N. & Jacquot, J. P. ( 2003; ). Molecular and catalytic properties of a peroxiredoxin–glutaredoxin hybrid from Neisseria meningitidis. FEBS Lett 554, 149–153.[CrossRef]
    [Google Scholar]
  62. Ruan, J., St John, G., Ehrt, S., Riley, L. & Nathan, C. ( 1999; ). noxR3, a novel gene from Mycobacterium tuberculosis, protects Salmonella typhimurium from nitrosative and oxidative stress. Infect Immun 67, 3276–3283.
    [Google Scholar]
  63. Seib, K. L., Jennings, M. P. & McEwan, A. G. ( 2003; ). A Sco homologue plays a role in defence against oxidative stress in pathogenic Neisseria. FEBS Lett 546, 411–415.[CrossRef]
    [Google Scholar]
  64. Seib, K. L., Tseng, H. J., McEwan, A. G., Apicella, M. A. & Jennings, M. P. ( 2004; ). Defenses against oxidative stress in Neisseria gonorrhoeae and Neisseria meningitidis: distinctive systems for different lifestyles. J Infect Dis 190, 136–147.[CrossRef]
    [Google Scholar]
  65. Seib, K. L., Wu, H. J., Kidd, S. P., Apicella, M. A., Jennings, M. P. & McEwan, A. G. ( 2006; ). Defenses against oxidative stress in Neisseria gonorrhoeae: a system tailored for a challenging environment. Microbiol Mol Biol Rev 70, 344–361.[CrossRef]
    [Google Scholar]
  66. Seib, K. L., Wu, H. J., Srikhanta, Y. N., Edwards, J. L., Falsetta, M. L., Hamilton, A. J., Maguire, T. L., Grimmond, S. M., Apicella, M. A. & other authors ( 2007; ). Characterization of the OxyR regulon of Neisseria gonorrhoeae. Mol Microbiol 63, 54–68.[CrossRef]
    [Google Scholar]
  67. Senaratne, R. H., De Silva, A. D., Williams, S. J., Mougous, J. D., Reader, J. R., Zhang, T., Chan, S., Sidders, B., Lee, D. H. & other authors ( 2006; ). 5′-Adenosinephosphosulphate reductase (CysH) protects Mycobacterium tuberculosis against free radicals during chronic infection phase in mice. Mol Microbiol 59, 1744–1753.[CrossRef]
    [Google Scholar]
  68. Shiloh, M. U., MacMicking, J. D., Nicholson, S., Brause, J. E., Potter, S., Marino, M., Fang, F., Dinauer, M. & Nathan, C. ( 1999; ). Phenotype of mice and macrophages deficient in both phagocyte oxidase and inducible nitric oxide synthase. Immunity 10, 29–38.[CrossRef]
    [Google Scholar]
  69. Simons, M. P., Nauseef, W. M. & Apicella, M. A. ( 2005; ). Interactions of Neisseria gonorrhoeae with adherent polymorphonuclear leukocytes. Infect Immun 73, 1971–1977.[CrossRef]
    [Google Scholar]
  70. Skaar, E. P., Tobiason, D. M., Quick, J., Judd, R. C., Weissbach, H., Etienne, F., Brot, N. & Seifert, H. S. ( 2002; ). The outer membrane localization of the Neisseria gonorrhoeae MsrA/B is involved in survival against reactive oxygen species. Proc Natl Acad Sci U S A 99, 10108–10113.[CrossRef]
    [Google Scholar]
  71. Stevanin, T. M., Moir, J. W. & Read, R. C. ( 2005; ). Nitric oxide detoxification systems enhance survival of Neisseria meningitidis in human macrophages and in nasopharyngeal mucosa. Infect Immun 73, 3322–3329.[CrossRef]
    [Google Scholar]
  72. Stohl, E. A., Criss, A. K. & Seifert, H. S. ( 2005; ). The transcriptome response of Neisseria gonorrhoeae to hydrogen peroxide reveals genes with previously uncharacterized roles in oxidative damage protection. Mol Microbiol 58, 520–532.[CrossRef]
    [Google Scholar]
  73. Subbian, S., Mehta, P. K., Cirillo, S. L. & Cirillo, J. D. ( 2007; ). The Mycobacterium marinum mel2 locus displays similarity to bacterial bioluminescence systems and plays a role in defense against reactive oxygen and nitrogen species. BMC Microbiol 7, 4 [CrossRef]
    [Google Scholar]
  74. Szabo, C., Ischiropoulos, H. & Radi, R. ( 2007; ). Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat Rev Drug Discov 6, 662–680.[CrossRef]
    [Google Scholar]
  75. Turner, S., Reid, E., Smith, H. & Cole, J. ( 2003; ). A novel cytochrome c peroxidase from Neisseria gonorrhoeae: a lipoprotein from a Gram-negative bacterium. Biochem J 373, 865–873.[CrossRef]
    [Google Scholar]
  76. Turner, S. M., Moir, J. W., Griffiths, L., Overton, T. W., Smith, H. & Cole, J. A. ( 2005; ). Mutational and biochemical analysis of cytochrome c′, a nitric oxide-binding lipoprotein important for adaptation of Neisseria gonorrhoeae to oxygen-limited growth. Biochem J 388, 545–553.[CrossRef]
    [Google Scholar]
  77. Umezawa, K., Akaike, T., Fujii, S., Suga, M., Setoguchi, K., Ozawa, A. & Maeda, H. ( 1997; ). Induction of nitric oxide synthesis and xanthine oxidase and their roles in the antimicrobial mechanism against Salmonella typhimurium infection in mice. Infect Immun 65, 2932–2940.
    [Google Scholar]
  78. Yu, K., Mitchell, C., Xing, Y., Magliozzo, R. S., Bloom, B. R. & Chan, J. ( 1999; ). Toxicity of nitrogen oxides and related oxidants on mycobacteria: M. tuberculosis is resistant to peroxynitrite anion. Tuber Lung Dis 79, 191–198.[CrossRef]
    [Google Scholar]
  79. Zhu, L., Gunn, C. & Beckman, J. S. ( 1992; ). Bactericidal activity of peroxynitrite. Arch Biochem Biophys 298, 452–457.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.028092-0
Loading
/content/journal/micro/10.1099/mic.0.028092-0
Loading

Data & Media loading...

Supplements

vol. , part 8, pp. 2532 - 2545

Bacterial strains used in this study [PDF file](57 KB)



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error