1887

Abstract

The glycolytic enzyme triosephosphate isomerase (TPI; EC 5.3.1.1) of is a candidate adhesion molecule for the interaction between the bacterium and the fungal pathogen . TPI may recognize the mannan backbone of glucuronoxylomannan (GXM) of . We purified TPI from extracts of surface proteins to investigate its binding by surface plasmon resonance analysis. The immobilized TPI reacted with GXM in a dose-dependent manner. Furthermore, the interactions between staphylococcal TPI and -(1→3)-mannooligosaccharides derived from GXM were examined. The oligosaccharides exhibited binding with TPI; however, monomeric mannose did not. Differences in the slopes of the sensorgrams were observed between oligosaccharides with an even number of residues versus those with an odd number. A heterogeneous ligand-parallel reaction model revealed the existence of at least two binding sites on TPI. The enzymic activities of TPI were inhibited in a dose-dependent manner by -(1→3)-mannooligosaccharides larger than triose. The binding of TPI and -(1→3)-mannotriose near the substrate-binding site was predicted (AutoDock 3.05). An oligosaccharide of size equal to or greater than triose could bind to the site, affecting enzymic activities. Moreover, affinities were indicated, especially for biose and tetraose, to another binding pocket, which would not affect enzymic activity. These data suggest a novel role for TPI, in addition to glycolysis, on the surface of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.028068-0
2009-08-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/8/2707.html?itemId=/content/journal/micro/10.1099/mic.0.028068-0&mimeType=html&fmt=ahah

References

  1. Antikainen, J., Kuparinen, V., Lahteenmaki, K. & Korhonen, T. K. ( 2007; ). Enolases from Gram-positive bacterial pathogens and commensal lactobacilli share functional similarity in virulence-associated traits. FEMS Immunol Med Microbiol 51, 526–534.[CrossRef]
    [Google Scholar]
  2. Bergmann, S., Rohde, M., Chhatwal, G. S. & Hammerschmidt, S. ( 2001; ). α-Enolase of Streptococcus pneumoniae is a plasmin(ogen)-binding protein displayed on the bacterial cell surface. Mol Microbiol 40, 1273–1287.[CrossRef]
    [Google Scholar]
  3. Bergmann, S., Rohde, M. & Hammerschmidt, S. ( 2004; ). Glyceraldehyde-3-phosphate dehydrogenase of Streptococcus pneumoniae is a surface-displayed plasminogen-binding protein. Infect Immun 72, 2416–2419.[CrossRef]
    [Google Scholar]
  4. Bohne, A., Lang, E. & von der Lieth, C. W. ( 1999; ). SWEET – WWW-based rapid 3D construction of oligo- and polysaccharides. Bioinformatics 15, 767–768.[CrossRef]
    [Google Scholar]
  5. Casadevall, A. & Perfect, J. R. ( 1998; ). Cryptococcus neoformans. Washington, DC: American Society for Microbiology.
  6. Dommett, R. M., Klein, N. & Turner, M. W. ( 2006; ). Mannose-binding lectin in innate immunity: past, present and future. Tissue Antigens 68, 193–209.[CrossRef]
    [Google Scholar]
  7. Egea, L., Aguilera, L., Gimenez, R., Sorolla, M. A., Aguilar, J., Badia, J. & Baldoma, L. ( 2007; ). Role of secreted glyceraldehyde-3-phosphate dehydrogenase in the infection mechanism of enterohemorrhagic and enteropathogenic Escherichia coli: interaction of the extracellular enzyme with human plasminogen and fibrinogen. Int J Biochem Cell Biol 39, 1190–1203.[CrossRef]
    [Google Scholar]
  8. Foster, T. J. ( 2004; ). The Staphylococcus aureus “superbug”. J Clin Invest 114, 1693–1696.[CrossRef]
    [Google Scholar]
  9. Gatlin, C. L., Pieper, R., Huang, S. T., Mongodin, E., Gebregeorgis, E., Parmar, P. P., Clark, D. J., Alami, H., Papazisi, L. & other authors ( 2006; ). Proteomic profiling of cell envelope-associated proteins from Staphylococcus aureus. Proteomics 6, 1530–1549.[CrossRef]
    [Google Scholar]
  10. Gil-Navarro, I., Gil, M. L., Casanova, M., O'Connor, J. E., Martinez, J. P. & Gozalbo, D. ( 1997; ). The glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase of Candida albicans is a surface antigen. J Bacteriol 179, 4992–4999.
    [Google Scholar]
  11. Guex, N. & Peitsch, M. C. ( 1997; ). SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18, 2714–2723.[CrossRef]
    [Google Scholar]
  12. Ichikawa, T., Nishikawa, A., Ikeda, R. & Shinoda, T. ( 2001; ). Structural studies of a cell wall polysaccharide of Trichosporon asahii containing antigen II. Eur J Biochem 268, 5098–5106.[CrossRef]
    [Google Scholar]
  13. Ikeda, R. & Maeda, T. ( 2004; ). Structural studies of the capsular polysaccharide of a non-neoformans Cryptococcus species identified as C. laurentii, which was reclassified as Cryptococcus flavescens, from a patient with AIDS. Carbohydr Res 339, 503–509.[CrossRef]
    [Google Scholar]
  14. Ikeda, R. & Sawamura, K. ( 2008; ). Bacterial and H2O2 stress-induced apoptosis-like events in Cryptococcus neoformans. Res Microbiol 159, 628–634.[CrossRef]
    [Google Scholar]
  15. Ikeda, R., Saito, F., Matsuo, M., Kurokawa, K., Sekimizu, K., Yamaguchi, M. & Kawamoto, S. ( 2007; ). Contribution of the mannan backbone of cryptococcal glucuronoxylomannan and a glycolytic enzyme of Staphylococcus aureus to contact-mediated killing of Cryptococcus neoformans. J Bacteriol 189, 4815–4826.[CrossRef]
    [Google Scholar]
  16. Kaper, J. B. & Sperandio, V. ( 2005; ). Bacterial cell-to-cell signaling in the gastrointestinal tract. Infect Immun 73, 3197–3209.[CrossRef]
    [Google Scholar]
  17. Kluytmans, J., van Belkum, A. & Verbrugh, H. ( 1997; ). Nasal carriage of Staphylococcus aureus: epidemiology, underlying mechanisms, and associated risks. Clin Microbiol Rev 10, 505–520.
    [Google Scholar]
  18. Komatsuzawa, H., Sugai, M., Nakashima, S., Yamada, S., Matsumoto, A., Oshida, T. & Suginaka, H. ( 1997; ). Subcellular localization of the major autolysin, ATL and its processed proteins in Staphylococcus aureus. Microbiol Immunol 41, 469–479.[CrossRef]
    [Google Scholar]
  19. Liu, X. F., Guan, Y. L., Yang, D. Z., Li, Z. & Yao, K. D. ( 2000; ). Antibacterial action of chitosan and carboxymethylated chitosan. J Appl Polym Sci 79, 1324–1335.
    [Google Scholar]
  20. Mader, C., Huber, C., Moll, D., Sleytr, U. B. & Sara, M. ( 2004; ). Interaction of the crystalline bacterial cell surface layer protein SbsB and the secondary cell wall polymer of Geobacillus stearothermophilus PV72 assessed by real-time surface plasmon resonance biosensor technology. J Bacteriol 186, 1758–1768.[CrossRef]
    [Google Scholar]
  21. Modun, B. & Williams, P. ( 1999; ). The staphylococcal transferrin-binding protein is a cell wall glyceraldehyde-3-phosphate dehydrogenase. Infect Immun 67, 1086–1092.
    [Google Scholar]
  22. Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K. & Olson, A. J. ( 1998; ). Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19, 1639–1662.[CrossRef]
    [Google Scholar]
  23. Pancholi, V. & Fischetti, V. A. ( 1992; ). A major surface protein on group A streptococci is a glyceraldehyde-3-phosphate-dehydrogenase with multiple binding activity. J Exp Med 176, 415–426.[CrossRef]
    [Google Scholar]
  24. Pancholi, V. & Fischetti, V. A. ( 1998; ). Alpha-enolase, a novel strong plasmin(ogen) binding protein on the surface of pathogenic streptococci. J Biol Chem 273, 14503–14515.[CrossRef]
    [Google Scholar]
  25. Park, B., Nizet, V. & Liu, G. Y. ( 2008; ). Role of Staphylococcus aureus catalase in niche competition against Streptococcus pneumoniae. J Bacteriol 190, 2275–2278.[CrossRef]
    [Google Scholar]
  26. Pereira, L. A., Bao, S. N., Barbosa, M. S., da Silva, J. L., Felipe, M. S., de Santana, J. M., Mendes-Giannini, M. J. & de Almeida Soares, C. M. ( 2007; ). Analysis of the Paracoccidioides brasiliensis triosephosphate isomerase suggests the potential for adhesin function. FEMS Yeast Res 7, 1381–1388.[CrossRef]
    [Google Scholar]
  27. Rozacky, E. E., Sawyer, T. H., Barton, R. A. & Gracy, R. W. ( 1971; ). Studies on human triosephosphate isomerase. I. Isolation and properties of the enzyme from erythrocytes. Arch Biochem Biophys 146, 312–320.[CrossRef]
    [Google Scholar]
  28. Ryan, R. P. & Dow, J. M. ( 2008; ). Diffusible signals and interspecies communication in bacteria. Microbiology 154, 1845–1858.[CrossRef]
    [Google Scholar]
  29. Saito, F. & Ikeda, R. ( 2005; ). Killing of Cryptococcus neoformans by Staphylococcus aureus: the role of cryptococcal capsular polysaccharide in the fungal–bacteria interaction. Med Mycol 43, 603–612.[CrossRef]
    [Google Scholar]
  30. Schwede, T., Kopp, J., Guex, N. & Peitsch, M. C. ( 2003; ). SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31, 3381–3385.[CrossRef]
    [Google Scholar]
  31. Sharon, N. ( 2006; ). Carbohydrates as future anti-adhesion drugs for infectious diseases. Biochim Biophys Acta 1760, 527–537.[CrossRef]
    [Google Scholar]
  32. Smith, S. A., Sreenivasan, R., Krishnasamy, G., Judge, K. W., Murthy, K. H., Arjunwadkar, S. J., Pugh, D. R. & Kotwal, G. J. ( 2003; ). Mapping of regions within the vaccinia virus complement control protein involved in dose-dependent binding to key complement components and heparin using surface plasmon resonance. Biochim Biophys Acta 1650, 30–39.[CrossRef]
    [Google Scholar]
  33. Terao, Y., Yamaguchi, M., Hamada, S. & Kawabata, S. ( 2006; ). Multifunctional glyceraldehyde-3-phosphate dehydrogenase of Streptococcus pyogenes is essential for evasion from neutrophils. J Biol Chem 281, 14215–14223.[CrossRef]
    [Google Scholar]
  34. van de Wetering, J. K., van Golde, L. M. & Batenburg, J. J. ( 2004; ). Collectins: players of the innate immune system. Eur J Biochem 271, 1229–1249.[CrossRef]
    [Google Scholar]
  35. von Bodman, S. B., Willey, J. M. & Diggle, S. P. ( 2008; ). Cell-cell communication in bacteria: united we stand. J Bacteriol 190, 4377–4391.[CrossRef]
    [Google Scholar]
  36. von Eiff, C., Becker, K., Machka, K., Stammer, H. & Peters, G. ( 2001; ). Nasal carriage as a source of Staphylococcus aureus bacteremia. Study Group. N Engl J Med 344, 11–16.[CrossRef]
    [Google Scholar]
  37. Yaqub, S., Abrahamsen, H., Zimmerman, B., Kholod, N., Torgersen, K. M., Mustelin, T., Herberg, F. W., Tasken, K. & Vang, T. ( 2003; ). Activation of C-terminal Src kinase (Csk) by phosphorylation at serine-364 depends on the Csk-Src homology 3 domain. Biochem J 372, 271–278.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.028068-0
Loading
/content/journal/micro/10.1099/mic.0.028068-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error