1887

Abstract

The cAMP receptor protein (Crp) is a global transcriptional regulator that binds sequence-specific promoter elements when associated with cAMP. In the motile cyanobacterium sp. strain PCC 6803, intracellular cAMP increases when dark-adapted cells are illuminated. Previous work has established that Crp binds proposed Crp target sites upstream of (), (), (), and , and that is downregulated in a mutant during photoautotrophic growth. To identify additional Crp target genes in , 11 different Crp binding sites proposed during a previous computational survey were tested for sequence-specific binding and -dependent transcription. The results indicate that and can be added as ‘target genes of Sycrp1’ in . Promoter mapping of the targets revealed the same close association of RNA polymerase and Crp as that found in class I and class II Crp-regulated promoters, thereby strongly suggesting similar mechanisms of transcriptional activation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.028035-0
2009-09-01
2020-07-11
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/9/2994.html?itemId=/content/journal/micro/10.1099/mic.0.028035-0&mimeType=html&fmt=ahah

References

  1. Argueta C., Summers M. L.. 2005; Characterization of a model system for the study of Nostoc punctiforme akinetes. Arch Microbiol183:338–346
    [Google Scholar]
  2. Argueta C., Yuksek K., Summers M.. 2004; Construction and use of GFP reporter vectors for analysis of cell-type-specific gene expression in Nostoc punctiforme. J Microbiol Methods59:181–188
    [Google Scholar]
  3. Argueta C., Yuksek K., Patel R., Summers M. L.. 2006; Identification of Nostoc punctiforme akinete-expressed genes using differential display. Mol Microbiol61:748–757
    [Google Scholar]
  4. Ausubel F., Brent R., Kingston R., Moore D., Seidman J., Smith J., Struhl K.. 2000; Current Protocols in Molecular Biology New York: Wiley;
    [Google Scholar]
  5. Bhaya D., Nakasugi K., Fazeli F., Burriesci M. S.. 2006; Phototaxis and impaired motility in adenylyl cyclase and cyclase receptor protein mutants of Synechocystis sp. strain PCC 6803. J Bacteriol188:7306–7310
    [Google Scholar]
  6. Borukhov S., Lee J.. 2005; RNA polymerase structure and function at lac operon. C R Biol328:576–587
    [Google Scholar]
  7. Botsford J. L., Harman J. G.. 1992; Cyclic AMP in prokaryotes. Microbiol Rev56:100–122
    [Google Scholar]
  8. Busby S. J., Ebright R. H.. 1999; Transcription activation by catabolite activator protein (CAP. J Mol Biol293:199–213
    [Google Scholar]
  9. Busby S., Kotlarz D., Buc H.. 1983; Deletion mutagenesis of the Escherichia coli galactose operon promoter region. J Mol Biol167:259–274
    [Google Scholar]
  10. Cann M. J.. 2004; Signalling through cyclic nucleotide monophosphates in cyanobacteria. New Phytol161:23–34
    [Google Scholar]
  11. Casadaban M. J., Cohen S. N.. 1980; Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. J Mol Biol138:179–207
    [Google Scholar]
  12. Casadaban M. J., Chou J., Cohen S. N.. 1980; In vitro gene fusions that join an enzymatically active β-galactosidase segment to amino-terminal fragments of exogenous proteins: Escherichia coli plasmid vectors for the detection and cloning of translational initiation signals. J Bacteriol143:971–980
    [Google Scholar]
  13. Curtis S. E., Martin J. A.. 1994; The transcription apparatus and the regulation of transcription initiation. In The Molecular Biology of Cyanobacteria pp613–639 Edited by Bryant D. A. Norwell, MA: Kluwer Academic Publishers;
    [Google Scholar]
  14. Dienst D., Duhring U., Mollenkopf H. J., Vogel J., Golecki J., Hess W. R., Wilde A.. 2008; The cyanobacterial homologue of the RNA chaperone Hfq is essential for motility of Synechocystis sp. PCC6803: Microbiology154:3134–3143
    [Google Scholar]
  15. Fernandez-Gonzalez B., Martinez-Ferez I. M., Vioque A.. 1998; Characterization of two carotenoid gene promoters in the cyanobacterium Synechocystis sp. PCC 6803. Biochim Biophys Acta 1443:343–351
    [Google Scholar]
  16. Gill R. T., Katsoulakis E., Schmitt W., Taroncher-Oldenburg G., Misra J., Stephanopoulos G.. 2002; Genome-wide dynamic transcriptional profiling of the light-to-dark transition in Synechocystis sp. strain PCC 6803. J Bacteriol184:3671–3681
    [Google Scholar]
  17. Hammer A., Hodgson D. R., Cann M. J.. 2006; Regulation of prokaryotic adenylyl cyclases by CO2. Biochem J396:215–218
    [Google Scholar]
  18. Jorgensen B. B., Revsbech N. P., Blackburn T. H., Cohen Y.. 1979; Diurnal cycle of oxygen and sulfide microgradients and microbial photosynthesis in a cyanobacterial mat sediment. Appl Environ Microbiol38:46–58
    [Google Scholar]
  19. Kaneko T., Sato S., Kotani H., Tanaka A., Asamizu E., Nakamura Y., Miyajima N., Hirosawa M., Sugiura M.. other authors 1996; Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 3:109–136
    [Google Scholar]
  20. Kim B.-H., Oh H.-M., Lee Y.-K., Choi G.-G., Ahn C.-Y., Yoon B.-D., Kim H.-S.. 2006; Simple method for RNA preparation from cyanobacteria. J Phycol42:1137–1141
    [Google Scholar]
  21. Kolb A., Busby S. J., Buc H., Garges S., Adhya S.. 1993; Transcriptional regulation by cAMP and its receptor protein. Annu Rev Biochem62:749–795
    [Google Scholar]
  22. Kunert A., Hagemann M., Erdmann N.. 2000; Construction of promoter probe vectors for Synechocystis sp. PCC 6803 using the light-emitting reporter systems Gfp and LuxAB. J Microbiol Methods41:185–194
    [Google Scholar]
  23. Malakhov M. P., Los D. A., Wada H., Semenenko V. E., Murata N.. 1995; Characterization of the murF gene of the cyanobacterium Synechocystis sp. PCC6803: Microbiology 141163–169
    [Google Scholar]
  24. Masuda S., Ono T. A.. 2004; Biochemical characterization of the major adenylyl cyclase, Cya1, in the cyanobacterium Synechocystis sp. PCC 6803. FEBS Lett 577:255–258
    [Google Scholar]
  25. Minamizaki K., Mizoguchi T., Goto T., Tamiaki H., Fujita Y.. 2008; Identification of two homologous genes, chlAI and chlAII, that are differentially involved in isocyclic ring formation of chlorophyll a in the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem283:2684–2692
    [Google Scholar]
  26. Ochoa de Alda J. A., Houmard J.. 2000; Genomic survey of cAMP and cGMP signalling components in the cyanobacterium Synechocystis PCC 6803. Microbiology146:3183–3194
    [Google Scholar]
  27. Ochoa de Alda J. A., Ajlani G., Houmard J.. 2000; Synechocystis strain PCC 6803 cya2, a prokaryotic gene that encodes a guanylyl cyclase. J Bacteriol182:3839–3842
    [Google Scholar]
  28. Ohmori M., Okamoto S.. 2004; Photoresponsive cAMP signal transduction in cyanobacteria. Photochem Photobiol Sci3:503–511
    [Google Scholar]
  29. Omagari K., Yoshimura H., Suzuki T., Takano M., Ohmori M., Sarai A.. 2008; Δ G-based prediction and experimental confirmation of SYCRP1-binding sites on the Synechocystis genome. FEBS J275:4786–4795
    [Google Scholar]
  30. Pfaffl M. W.. 2001; A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res29:e45
    [Google Scholar]
  31. Sakamoto T., Murata N., Ohmori M.. 1991; The concentration of cyclic AMP and adenylate cyclase activity in cyanobacteria. Plant Cell Physiol32:581–584
    [Google Scholar]
  32. Sato S., Shimoda Y., Muraki A., Kohara M., Nakamura Y., Tabata S.. 2007; A large-scale protein–protein interaction analysis in Synechocystis sp. PCC6803. DNA Res14:207–216
    [Google Scholar]
  33. Singh A. K., Elvitigala T., Bhattacharyya-Pakrasi M., Aurora R., Ghosh B., Pakrasi H. B.. 2008; Integration of carbon and nitrogen metabolism with energy production is crucial to light acclimation in the cyanobacterium Synechocystis. Plant Physiol148:467–478
    [Google Scholar]
  34. Stanier R. Y., Kunisawa R., Mandel M., Cohen-Bazire G.. 1971; Purification and properties of unicellular blue-green algae (order Chroococcales. Bacteriol Rev35:171–205
    [Google Scholar]
  35. Stevens D. R., Rochaix J. D., Purton S.. 1996; The bacterial phleomycin resistance gene ble as a dominant selectable marker in Chlamydomonas. Mol Gen Genet251:23–30
    [Google Scholar]
  36. Su Z., Olman V., Mao F., Xu Y.. 2005; Comparative genomics analysis of NtcA regulons in cyanobacteria: regulation of nitrogen assimilation and its coupling to photosynthesis. Nucleic Acids Res33:5156–5171
    [Google Scholar]
  37. Subramaniam S.. 1998; The Biology Workbench – a seamless database and analysis environment for the biologist. Proteins32:1–2
    [Google Scholar]
  38. Sugishima M., Hagiwara Y., Zhang X., Yoshida T., Migita C. T., Fukuyama K.. 2005; Crystal structure of dimeric heme oxygenase-2 from Synechocystis sp. PCC 6803 in complex with heme. Biochemistry44:4257–4266
    [Google Scholar]
  39. Summerfield T. C., Sherman L. A.. 2008; Global transcriptional response of the alkalitolerant cyanobacterium Synechocystis sp. strain PCC 6803 to pH 10. Appl Environ Microbiol74:5276–5284
    [Google Scholar]
  40. Summers M. L., Wallis J. G., Campbell E. L., Meeks J. C.. 1995; Genetic evidence of a major role for glucose-6-phosphate dehydrogenase in nitrogen fixation and dark growth of the cyanobacterium Nostoc sp. strain ATCC 29133. J Bacteriol177:6184–6194
    [Google Scholar]
  41. Terauchi K., Ohmori M.. 1998; An adenylate cyclase, CyaD, mediates the signal of blue light in the cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol39:s153
    [Google Scholar]
  42. Terauchi K., Ohmori M.. 1999; An adenylate cyclase, Cya1, regulates cell motility in the cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol40:248–251
    [Google Scholar]
  43. Terauchi K., Ohmori M.. 2004; Blue light stimulates cyanobacterial motility via a cAMP signal transduction system. Mol Microbiol52:303–309
    [Google Scholar]
  44. Vogel J., Axmann I. M., Herzel H., Hess W. R.. 2003; Experimental and computational analysis of transcriptional start sites in the cyanobacterium Prochlorococcus MED4. Nucleic Acids Res31:2890–2899
    [Google Scholar]
  45. Xu M., Su Z.. 2009; Computational prediction of cAMP receptor protein (CRP) binding sites in cyanobacterial genomes. BMC Genomics10:23
    [Google Scholar]
  46. Yoshimura H., Hisabori T., Yanagisawa S., Ohmori M.. 2000; Identification and characterization of a novel cAMP receptor protein in the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem275:6241–6245
    [Google Scholar]
  47. Yoshimura H., Yanagisawa S., Kanehisa M., Ohmori M.. 2002a; Screening for the target gene of cyanobacterial cAMP receptor protein SYCRP1. Mol Microbiol43:843–853
    [Google Scholar]
  48. Yoshimura H., Yoshihara S., Okamoto S., Ikeuchi M., Ohmori M.. 2002b; A cAMP receptor protein, SYCRP1, is responsible for the cell motility of Synechocystis sp. PCC 6803. Plant Cell Physiol43:460–463
    [Google Scholar]
  49. Zhang X., Migita C. T., Sato M., Sasahara M., Yoshida T.. 2005; Protein expressed by the ho2 gene of the cyanobacterium Synechocystis sp. PCC 6803 is a true heme oxygenase. Properties of the heme and enzyme complex. FEBS J272:1012–1022
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.028035-0
Loading
/content/journal/micro/10.1099/mic.0.028035-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error