1887

Abstract

is a well-known pathogen in chronic respiratory diseases such as cystic fibrosis. Infectivity of is related to the ability to grow under oxygen-limited conditions using the anaerobic metabolism of denitrification, in which nitrate is reduced to dinitrogen via nitric oxide (NO). Denitrification is activated by a cascade of redox-sensitive transcription factors, among which is the DNR regulator, sensitive to nitrogen oxides. To gain further insight into the mechanism of NO-sensing by DNR, we have developed an -based reporter system to investigate different aspects of DNR activity. In DNR responds to NO, as shown by its ability to transactivate the promoter. The direct binding of DNR to the target DNA is required, since mutations in the helix–turn–helix domain of DNR and specific nucleotide substitutions in the consensus sequence of the promoter abolish the transcriptional activity. Using an strain deficient in haem biosynthesis, we have also confirmed that haem is required for the NO-dependent DNR activity, in agreement with the property of DNR to bind haem . Finally, we have shown, we believe for the first time, that DNR is able to discriminate between different diatomic signal molecules, NO and CO, both ligands of the reduced haem iron , suggesting that DNR responds specifically to NO.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.028027-0
2009-09-01
2024-12-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/9/2838.html?itemId=/content/journal/micro/10.1099/mic.0.028027-0&mimeType=html&fmt=ahah

References

  1. Alvarez-Ortega C., Harwood C. S. 2007; Responses of Pseudomonas aeruginosa to low oxygen indicate that growth in the cystic fibrosis lung is by aerobic respiration. Mol Microbiol 65:153–165
    [Google Scholar]
  2. Andrew C. R., Green E. L., Lawson D. M., Eady R. R. 2001; Resonance Raman studies of cytochrome c′ support the binding of NO and CO to opposite sides of the heme: implications for ligand discrimination in heme-based sensors. Biochemistry 40:4115–4122
    [Google Scholar]
  3. Arai H., Igarashi Y., Kodama T. 1995; Expression of the nir and nor genes for denitrification of Pseudomonas aeruginosa requires a novel CRP/FNR-related transcriptional regulator, DNR, in addition to ANR. FEBS Lett 371:73–76
    [Google Scholar]
  4. Arai H., Kodama T., Igarashi Y. 1997; Cascade regulation of the two CRP/FNR-related transcriptional regulators (ANR and DNR) and the denitrification enzymes in Pseudomonas aeruginosa . Mol Microbiol 25:1141–1148
    [Google Scholar]
  5. Arai H., Kodama T., Igarashi Y. 1999; Effect of nitrogen oxides on expression of the nir and nor genes for denitrification in Pseudomonas aeruginosa . FEMS Microbiol Lett 170:19–24
    [Google Scholar]
  6. Arai H., Mizutani M., Igarashi Y. 2003; Transcriptional regulation of the nos genes for nitrous oxide reductase in Pseudomonas aeruginosa . Microbiology 149:29–36
    [Google Scholar]
  7. Barraud N., Hassett D. J., Hwang S. H., Rice S. A., Kjelleberg S., Webb J. S. 2006; Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa . J Bacteriol 188:7344–7353
    [Google Scholar]
  8. Boon E. M., Marletta M. A. 2005; Ligand discrimination in soluble guanylate cyclase and the H-NOX family of heme sensor proteins. Curr Opin Chem Biol 9:441–446
    [Google Scholar]
  9. Corker H., Poole R. K. 2003; Nitric oxide formation by Escherichia coli. Dependence on nitrite reductase, the NO-sensing regulator Fnr, and flavohemoglobin Hmp. J Biol Chem 278:31584–31592
    [Google Scholar]
  10. Darwin A., Hussain H., Griffiths L., Grove J., Sambongi Y., Busby S., Cole J. 1993; Regulation and sequence of the structural gene for cytochrome c 552 from Escherichia coli: not a hexahaem but a 50 kDa tetrahaem nitrite reductase. Mol Microbiol 9:1255–1265
    [Google Scholar]
  11. Eiglmeier K., Honoré N., Iuchi S., Lin E. C., Cole S. T. 1989; Molecular genetic analysis of FNR-dependent promoters. Mol Microbiol 3:869–878
    [Google Scholar]
  12. Elvers K. T., Turner S. M., Wainwright L. M., Marsden G., Hinds J., Cole J. A., Poole R. K., Penn C. W., Park S. F. 2005; NssR, a member of the Crp-Fnr superfamily from Campylobacter jejuni, regulates a nitrosative stress-responsive regulon that includes both a single-domain and a truncated haemoglobin. Mol Microbiol 57:735–750
    [Google Scholar]
  13. Galimand M., Gamper M., Zimmermann A., Haas D. 1991; Positive FNR-like control of anaerobic arginine degradation and nitrate respiration in Pseudomonas aeruginosa . J Bacteriol 173:1598–1606
    [Google Scholar]
  14. Giardina G., Rinaldo S., Johnson K. A., Di Matteo A., Brunori M., Cutruzzolà F. 2008; NO sensing in Pseudomonas aeruginosa: structure of the transcriptional regulator DNR. J Mol Biol 378:1002–1015
    [Google Scholar]
  15. Gilles-Gonzalez M. A., Gonzalez G. 2005; Heme-based sensors: defifining characteristics, recent developments, and regulatory hypotheses. J Inorg Biochem 99:1–22
    [Google Scholar]
  16. Green J., Bennett B., Jordan P., Ralph E. T., Thomson A. J., Guest J. R. 1996; Reconstitution of the [4Fe–4S] cluster in FNR and demonstration of the aerobic–anaerobic transcription switch in vitro. Biochem J 316:887–892
    [Google Scholar]
  17. Green J., Scott C., Guest J. R. 2001; Functional versatility in the CRP-FNR superfamily of transcription factors: FNR and FLP. Adv Microb Physiol 44:1–34
    [Google Scholar]
  18. Harris W. F., Burkhalter R. S., Wen L., Timkovich R. 1993; Enhancement of bacterial porphyrin biosynthesis by exogenous aminolevulinic acid and isomer specificity of the products. Bioorg Chem 21:209–220
    [Google Scholar]
  19. Hasegawa N., Arai H., Igarashi Y. 1998; Activation of a consensus FNR-dependent promoter by DNR of Pseudomonas aeruginosa in response to nitrite. FEMS Microbiol Lett 166:213–217
    [Google Scholar]
  20. Hassett D. J., Cuppoletti J., Trapnell B., Lymar S. V., Rowe J. J., Yoon S. S., Hilliard G. M., Parvatiyar K., Kamani M. C. other authors 2002; Anaerobic metabolism and quorum sensing by Pseudomonas aeruginosa biofilms in chronically infected cystic fibrosis airways: rethinking antibiotic treatment strategies and drug targets. Adv Drug Deliv Rev 54:1425–1443
    [Google Scholar]
  21. Hoeren F. U., Berks B. C., Ferguson S. J., McCarthy J. E. 1993; Sequence and expression of the gene encoding the respiratory nitrous-oxide reductase from Paracoccus denitrificans. New and conserved structural and regulatory motifs. Eur J Biochem 218:49–57
    [Google Scholar]
  22. Hutchings M. I., Shearer N., Wastell S., van Spanning R. J., Spiro S. 2000; Heterologous NNR-mediated nitric oxide signaling in Escherichia coli . J Bacteriol 182:6434–6439
    [Google Scholar]
  23. Hutchings M. I., Mandhana N., Spiro S. 2002; The NorR protein of Escherichia coli activates expression of the flavorubredoxin gene norV in response to reactive nitrogen species. J Bacteriol 184:4640–4643
    [Google Scholar]
  24. Jordan P. A., Thomson A. J., Ralph E. T., Guest J. R., Green J. 1997; FNR is a direct oxygen sensor having a biphasic response curve. FEBS Lett 416:349–352
    [Google Scholar]
  25. Khoroshilova N., Beinert H., Kiley P. 1995; Association of a polynuclear iron–sulfur center with a mutant FNR protein enhances DNA binding. Proc Natl Acad Sci U S A 92:2499–2503
    [Google Scholar]
  26. Khoroshilova N., Popescu C., Münck E., Beinert H., Kiley P. 1997; Iron–sulfur cluster disassembly in the FNR protein of Escherichia coli by O2: [4Fe–4S] to [2Fe–2S] conversion with loss of biological activity. Proc Natl Acad Sci U S A 94:6087–6092
    [Google Scholar]
  27. Körner H., Sofia H. J., Zumft W. G. 2003; Phylogeny of the bacterial superfamily of Crp-Fnr transcription regulators: exploiting the metabolic spectrum by controlling alternative gene programs. FEMS Microbiol Rev 27:559–592
    [Google Scholar]
  28. Lanzilotta W. N., Schuller D. J., Thorsteinsson M. V., Kerby R. L., Roberts G. P., Poulos T. L. 2000; Structure of the CO sensing transcription activator CooA. Nat Struct Biol 7:876–880
    [Google Scholar]
  29. Lee Y. Y., Shearer N., Spiro S. 2006; Transcription factor NNR from Paracoccus denitrificans is a sensor of both nitric oxide and oxygen: isolation of nnr* alleles encoding effector-independent proteins and evidence for a haem-based sensing mechanism. Microbiology 152:1461–1470
    [Google Scholar]
  30. McKay D. B., Steitz T. A. 1981; Structure of catabolite gene activator protein at 2.9 Å resolution suggests binding to left-handed B-DNA. Nature 290:744–749
    [Google Scholar]
  31. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  32. Platt M. D., Schurr M. J., Sauer K., Vazquez G., Kukavica-Ibrulj I., Potvin E., Levesque R. C., Fedynak A., Brinkman F. S. other authors 2008; Proteomic, microarray, and signature-tagged mutagenesis analyses of anaerobic Pseudomonas aeruginosa at pH 6.5, likely representing chronic, late-stage cystic fibrosis airway conditions. J Bacteriol 190:2739–2758
    [Google Scholar]
  33. Rinaldo S., Giardina G., Brunori M., Cutruzzola F. 2006; N-oxide sensing and denitrification: the DNR transcription factors. Biochem Soc Trans 34:185–187
    [Google Scholar]
  34. Scott C., Partridge J. D., Stephenson J. R., Green J. 2003; DNA target sequence and FNR-dependent gene expression. FEBS Lett 541:97–101
    [Google Scholar]
  35. Shelver D., Kerby R. L., He Y., Roberts G. P. 1997; CooA, a CO-sensing transcription factor from Rhodospirillum rubrum, is a CO-binding heme protein. Proc Natl Acad Sci U S A 94:11216–11220
    [Google Scholar]
  36. Singh P. K., Schaefer A. L., Parsek M. R., Moninger T. O., Welsh M. J., Greenberg E. P. 2000; Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407:762–764
    [Google Scholar]
  37. Spiro S., Gaston K. L., Bell A. I., Roberts R. E., Busby S. J., Guest J. R. 1990; Interconversion of the DNA-binding specificities of two related transcription regulators, CRP and FNR. Mol Microbiol 4:1831–1838
    [Google Scholar]
  38. Van Spanning R. J., Houben E., Reijnders W. N., Spiro S., Westerhoff H. V., Saunders N. 1999; Nitric oxide is a signal for NNR-mediated transcription activation in Paracoccus denitrificans . J Bacteriol 181:4129–4132
    [Google Scholar]
  39. Walker M. S., DeMoss J. A. 1992; Role of alternative promoter elements in transcription from the nar promoter of Escherichia coli . J Bacteriol 174:1119–1123
    [Google Scholar]
  40. Wing H. J., Williams S. M., Busby S. J. 1995; Spacing requirements for transcription activation by Escherichia coli FNR protein. J Bacteriol 177:6704–6710
    [Google Scholar]
  41. Yoon S. S., Hennigan R. F., Hilliard G. M., Ochsner U. A., Parvatiyar K., Kamani M. C., Allen H. L., DeKievit T. R., Gardner P. R. other authors 2002; Pseudomonas aeruginosa anaerobic respiration in biofilms: relationships to cystic fibrosis pathogenesis. Dev Cell 3:593–603
    [Google Scholar]
  42. Yoon S. S., Coakley R., Lau G. W., Lymar S. V., Gaston B., Karabulut A. C., Hennigan R. F., Hwang S. H., Buettner G. other authors 2006; Anaerobic killing of mucoid Pseudomonas aeruginosa by acidified nitrite derivatives under cystic fibrosis airway conditions. J Clin Invest 116:436–446
    [Google Scholar]
  43. Zumft W. G. 1997; Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 61:533–616
    [Google Scholar]
  44. Zumft W. G. 2002; Nitric oxide signaling and NO dependent transcriptional control in bacterial denitrification by members of the FNR-CRP regulator family. J Mol Microbiol Biotechnol 4:277–286
    [Google Scholar]
  45. Zumft W. G., Braun C., Cuypers H. 1994; Nitric oxide reductase from Pseudomonas stutzeri. Primary structure and gene organization of a novel bacterial cytochrome bc complex. Eur J Biochem 219:481–490
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.028027-0
Loading
/content/journal/micro/10.1099/mic.0.028027-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error