1887

Abstract

is a well-known pathogen in chronic respiratory diseases such as cystic fibrosis. Infectivity of is related to the ability to grow under oxygen-limited conditions using the anaerobic metabolism of denitrification, in which nitrate is reduced to dinitrogen via nitric oxide (NO). Denitrification is activated by a cascade of redox-sensitive transcription factors, among which is the DNR regulator, sensitive to nitrogen oxides. To gain further insight into the mechanism of NO-sensing by DNR, we have developed an -based reporter system to investigate different aspects of DNR activity. In DNR responds to NO, as shown by its ability to transactivate the promoter. The direct binding of DNR to the target DNA is required, since mutations in the helix–turn–helix domain of DNR and specific nucleotide substitutions in the consensus sequence of the promoter abolish the transcriptional activity. Using an strain deficient in haem biosynthesis, we have also confirmed that haem is required for the NO-dependent DNR activity, in agreement with the property of DNR to bind haem . Finally, we have shown, we believe for the first time, that DNR is able to discriminate between different diatomic signal molecules, NO and CO, both ligands of the reduced haem iron , suggesting that DNR responds specifically to NO.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.028027-0
2009-09-01
2020-07-09
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/9/2838.html?itemId=/content/journal/micro/10.1099/mic.0.028027-0&mimeType=html&fmt=ahah

References

  1. Alvarez-Ortega C., Harwood C. S.. 2007; Responses of Pseudomonas aeruginosa to low oxygen indicate that growth in the cystic fibrosis lung is by aerobic respiration. Mol Microbiol65:153–165
    [Google Scholar]
  2. Andrew C. R., Green E. L., Lawson D. M., Eady R. R.. 2001; Resonance Raman studies of cytochrome c′ support the binding of NO and CO to opposite sides of the heme: implications for ligand discrimination in heme-based sensors. Biochemistry40:4115–4122
    [Google Scholar]
  3. Arai H., Igarashi Y., Kodama T.. 1995; Expression of the nir and nor genes for denitrification of Pseudomonas aeruginosa requires a novel CRP/FNR-related transcriptional regulator, DNR, in addition to ANR. FEBS Lett371:73–76
    [Google Scholar]
  4. Arai H., Kodama T., Igarashi Y.. 1997; Cascade regulation of the two CRP/FNR-related transcriptional regulators (ANR and DNR) and the denitrification enzymes in Pseudomonas aeruginosa. Mol Microbiol25:1141–1148
    [Google Scholar]
  5. Arai H., Kodama T., Igarashi Y.. 1999; Effect of nitrogen oxides on expression of the nir and nor genes for denitrification in Pseudomonas aeruginosa. FEMS Microbiol Lett170:19–24
    [Google Scholar]
  6. Arai H., Mizutani M., Igarashi Y.. 2003; Transcriptional regulation of the nos genes for nitrous oxide reductase in Pseudomonas aeruginosa. Microbiology149:29–36
    [Google Scholar]
  7. Barraud N., Hassett D. J., Hwang S. H., Rice S. A., Kjelleberg S., Webb J. S.. 2006; Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa. J Bacteriol188:7344–7353
    [Google Scholar]
  8. Boon E. M., Marletta M. A.. 2005; Ligand discrimination in soluble guanylate cyclase and the H-NOX family of heme sensor proteins. Curr Opin Chem Biol9:441–446
    [Google Scholar]
  9. Corker H., Poole R. K.. 2003; Nitric oxide formation by Escherichia coli. Dependence on nitrite reductase, the NO-sensing regulator Fnr, and flavohemoglobin Hmp. J Biol Chem278:31584–31592
    [Google Scholar]
  10. Darwin A., Hussain H., Griffiths L., Grove J., Sambongi Y., Busby S., Cole J.. 1993; Regulation and sequence of the structural gene for cytochrome c 552 from Escherichia coli: not a hexahaem but a 50 kDa tetrahaem nitrite reductase. Mol Microbiol9:1255–1265
    [Google Scholar]
  11. Eiglmeier K., Honoré N., Iuchi S., Lin E. C., Cole S. T.. 1989; Molecular genetic analysis of FNR-dependent promoters. Mol Microbiol3:869–878
    [Google Scholar]
  12. Elvers K. T., Turner S. M., Wainwright L. M., Marsden G., Hinds J., Cole J. A., Poole R. K., Penn C. W., Park S. F.. 2005; NssR, a member of the Crp-Fnr superfamily from Campylobacter jejuni, regulates a nitrosative stress-responsive regulon that includes both a single-domain and a truncated haemoglobin. Mol Microbiol57:735–750
    [Google Scholar]
  13. Galimand M., Gamper M., Zimmermann A., Haas D.. 1991; Positive FNR-like control of anaerobic arginine degradation and nitrate respiration in Pseudomonas aeruginosa. J Bacteriol173:1598–1606
    [Google Scholar]
  14. Giardina G., Rinaldo S., Johnson K. A., Di Matteo A., Brunori M., Cutruzzolà F.. 2008; NO sensing in Pseudomonas aeruginosa: structure of the transcriptional regulator DNR. J Mol Biol378:1002–1015
    [Google Scholar]
  15. Gilles-Gonzalez M. A., Gonzalez G.. 2005; Heme-based sensors: defifining characteristics, recent developments, and regulatory hypotheses. J Inorg Biochem99:1–22
    [Google Scholar]
  16. Green J., Bennett B., Jordan P., Ralph E. T., Thomson A. J., Guest J. R.. 1996; Reconstitution of the [4Fe–4S] cluster in FNR and demonstration of the aerobic–anaerobic transcription switch in vitro. Biochem J316:887–892
    [Google Scholar]
  17. Green J., Scott C., Guest J. R.. 2001; Functional versatility in the CRP-FNR superfamily of transcription factors: FNR and FLP. Adv Microb Physiol44:1–34
    [Google Scholar]
  18. Harris W. F., Burkhalter R. S., Wen L., Timkovich R.. 1993; Enhancement of bacterial porphyrin biosynthesis by exogenous aminolevulinic acid and isomer specificity of the products. Bioorg Chem21:209–220
    [Google Scholar]
  19. Hasegawa N., Arai H., Igarashi Y.. 1998; Activation of a consensus FNR-dependent promoter by DNR of Pseudomonas aeruginosa in response to nitrite. FEMS Microbiol Lett166:213–217
    [Google Scholar]
  20. Hassett D. J., Cuppoletti J., Trapnell B., Lymar S. V., Rowe J. J., Yoon S. S., Hilliard G. M., Parvatiyar K., Kamani M. C.. other authors 2002; Anaerobic metabolism and quorum sensing by Pseudomonas aeruginosa biofilms in chronically infected cystic fibrosis airways: rethinking antibiotic treatment strategies and drug targets. Adv Drug Deliv Rev54:1425–1443
    [Google Scholar]
  21. Hoeren F. U., Berks B. C., Ferguson S. J., McCarthy J. E.. 1993; Sequence and expression of the gene encoding the respiratory nitrous-oxide reductase from Paracoccus denitrificans. New and conserved structural and regulatory motifs. Eur J Biochem218:49–57
    [Google Scholar]
  22. Hutchings M. I., Shearer N., Wastell S., van Spanning R. J., Spiro S.. 2000; Heterologous NNR-mediated nitric oxide signaling in Escherichia coli. J Bacteriol182:6434–6439
    [Google Scholar]
  23. Hutchings M. I., Mandhana N., Spiro S.. 2002; The NorR protein of Escherichia coli activates expression of the flavorubredoxin gene norV in response to reactive nitrogen species. J Bacteriol184:4640–4643
    [Google Scholar]
  24. Jordan P. A., Thomson A. J., Ralph E. T., Guest J. R., Green J.. 1997; FNR is a direct oxygen sensor having a biphasic response curve. FEBS Lett416:349–352
    [Google Scholar]
  25. Khoroshilova N., Beinert H., Kiley P.. 1995; Association of a polynuclear iron–sulfur center with a mutant FNR protein enhances DNA binding. Proc Natl Acad Sci U S A92:2499–2503
    [Google Scholar]
  26. Khoroshilova N., Popescu C., Münck E., Beinert H., Kiley P.. 1997; Iron–sulfur cluster disassembly in the FNR protein of Escherichia coli by O2: [4Fe–4S] to [2Fe–2S] conversion with loss of biological activity. Proc Natl Acad Sci U S A94:6087–6092
    [Google Scholar]
  27. Körner H., Sofia H. J., Zumft W. G.. 2003; Phylogeny of the bacterial superfamily of Crp-Fnr transcription regulators: exploiting the metabolic spectrum by controlling alternative gene programs. FEMS Microbiol Rev27:559–592
    [Google Scholar]
  28. Lanzilotta W. N., Schuller D. J., Thorsteinsson M. V., Kerby R. L., Roberts G. P., Poulos T. L.. 2000; Structure of the CO sensing transcription activator CooA. Nat Struct Biol7:876–880
    [Google Scholar]
  29. Lee Y. Y., Shearer N., Spiro S.. 2006; Transcription factor NNR from Paracoccus denitrificans is a sensor of both nitric oxide and oxygen: isolation of nnr* alleles encoding effector-independent proteins and evidence for a haem-based sensing mechanism. Microbiology152:1461–1470
    [Google Scholar]
  30. McKay D. B., Steitz T. A.. 1981; Structure of catabolite gene activator protein at 2.9 Å resolution suggests binding to left-handed B-DNA. Nature290:744–749
    [Google Scholar]
  31. Miller J. H.. 1972; Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  32. Platt M. D., Schurr M. J., Sauer K., Vazquez G., Kukavica-Ibrulj I., Potvin E., Levesque R. C., Fedynak A., Brinkman F. S.. other authors 2008; Proteomic, microarray, and signature-tagged mutagenesis analyses of anaerobic Pseudomonas aeruginosa at pH 6.5, likely representing chronic, late-stage cystic fibrosis airway conditions. J Bacteriol190:2739–2758
    [Google Scholar]
  33. Rinaldo S., Giardina G., Brunori M., Cutruzzola F.. 2006; N-oxide sensing and denitrification: the DNR transcription factors. Biochem Soc Trans34:185–187
    [Google Scholar]
  34. Scott C., Partridge J. D., Stephenson J. R., Green J.. 2003; DNA target sequence and FNR-dependent gene expression. FEBS Lett541:97–101
    [Google Scholar]
  35. Shelver D., Kerby R. L., He Y., Roberts G. P.. 1997; CooA, a CO-sensing transcription factor from Rhodospirillum rubrum, is a CO-binding heme protein. Proc Natl Acad Sci U S A94:11216–11220
    [Google Scholar]
  36. Singh P. K., Schaefer A. L., Parsek M. R., Moninger T. O., Welsh M. J., Greenberg E. P.. 2000; Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature407:762–764
    [Google Scholar]
  37. Spiro S., Gaston K. L., Bell A. I., Roberts R. E., Busby S. J., Guest J. R.. 1990; Interconversion of the DNA-binding specificities of two related transcription regulators, CRP and FNR. Mol Microbiol4:1831–1838
    [Google Scholar]
  38. Van Spanning R. J., Houben E., Reijnders W. N., Spiro S., Westerhoff H. V., Saunders N.. 1999; Nitric oxide is a signal for NNR-mediated transcription activation in Paracoccus denitrificans. J Bacteriol181:4129–4132
    [Google Scholar]
  39. Walker M. S., DeMoss J. A.. 1992; Role of alternative promoter elements in transcription from the nar promoter of Escherichia coli. J Bacteriol174:1119–1123
    [Google Scholar]
  40. Wing H. J., Williams S. M., Busby S. J.. 1995; Spacing requirements for transcription activation by Escherichia coli FNR protein. J Bacteriol177:6704–6710
    [Google Scholar]
  41. Yoon S. S., Hennigan R. F., Hilliard G. M., Ochsner U. A., Parvatiyar K., Kamani M. C., Allen H. L., DeKievit T. R., Gardner P. R.. other authors 2002; Pseudomonas aeruginosa anaerobic respiration in biofilms: relationships to cystic fibrosis pathogenesis. Dev Cell3:593–603
    [Google Scholar]
  42. Yoon S. S., Coakley R., Lau G. W., Lymar S. V., Gaston B., Karabulut A. C., Hennigan R. F., Hwang S. H., Buettner G.. other authors 2006; Anaerobic killing of mucoid Pseudomonas aeruginosa by acidified nitrite derivatives under cystic fibrosis airway conditions. J Clin Invest116:436–446
    [Google Scholar]
  43. Zumft W. G.. 1997; Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev61:533–616
    [Google Scholar]
  44. Zumft W. G.. 2002; Nitric oxide signaling and NO dependent transcriptional control in bacterial denitrification by members of the FNR-CRP regulator family. J Mol Microbiol Biotechnol4:277–286
    [Google Scholar]
  45. Zumft W. G., Braun C., Cuypers H.. 1994; Nitric oxide reductase from Pseudomonas stutzeri. Primary structure and gene organization of a novel bacterial cytochrome bc complex. Eur J Biochem219:481–490
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.028027-0
Loading
/content/journal/micro/10.1099/mic.0.028027-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error