1887

Abstract

previously classified as a strict anaerobe, can grow in the presence of low concentrations of oxygen. Microarray analysis revealed alteration in gene expression in the presence of 6 % oxygen. During the exponential growth phase, 96 genes were upregulated and 79 genes were downregulated 1.4-fold. Genes encoding proteins that play a role in oxidative stress protection were upregulated, including alkyl hydroperoxide reductase (), superoxide dismutase () and thiol peroxidase (). Significant changes in gene expression of proteins that mediate oxidative metabolism, such as cytochrome ubiquinol oxidase-encoding genes, and , were detected. The expression of genes encoding formate uptake transporter (PG0209) and formate tetrahydrofolate ligase () was drastically elevated, which indicates that formate metabolism plays a major role under aerobic conditions. The concomitant reduction of expression of a gene encoding the lactate transporter PG1340 suggests decreased utilization of this nutrient. The concentrations of both formate and lactate were assessed in culture supernatants and cells, and they were in agreement with the results obtained at the transcriptional level. Also, genes encoding gingipain protease secretion/maturation regulator () and protease transporter () had reduced expression in the presence of oxygen, which also correlated with reduced protease activities under aerobic conditions. In addition, metal transport was affected, and while iron-uptake genes such as the genes encoding the haemin uptake locus () were downregulated, expression of manganese transporter genes, such as , was elevated in the presence of oxygen. Finally, genes encoding putative regulatory proteins such as extracellular function (ECF) sigma factors as well as small proteins had elevated expression levels in the presence of oxygen. As is distantly related to the well-studied model organism , results from our work may provide further understanding of oxygen metabolism and protection in other related bacteria belonging to the phylum .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.027953-0
2009-11-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/11/3758.html?itemId=/content/journal/micro/10.1099/mic.0.027953-0&mimeType=html&fmt=ahah

References

  1. Archibald, F. S. & Fridovich, I. ( 1982; ). The scavenging of superoxide radical by manganous complexes: in vitro. Arch Biochem Biophys 214, 452–463.[CrossRef]
    [Google Scholar]
  2. Bang, I. S., Frye, J. G., McClelland, M., Velayudhan, J. & Fang, F. C. ( 2005; ). Alternative sigma factor interactions in Salmonella: σ E and σ H promote antioxidant defences by enhancing σ S levels. Mol Microbiol 56, 811–823.[CrossRef]
    [Google Scholar]
  3. Baughn, A. D. & Malamy, M. H. ( 2004; ). The strict anaerobe Bacteroides fragilis grows in and benefits from nanomolar concentrations of oxygen. Nature 427, 441–444.[CrossRef]
    [Google Scholar]
  4. Beck, J. D., Offenbacher, S., Williams, R., Gibbs, P. & Garcia, R. ( 1998; ). Periodontitis: a risk factor for coronary heart disease? Ann Periodontol 3, 127–141.[CrossRef]
    [Google Scholar]
  5. Caperelli, C. A., Benkovic, P. A., Chettur, G. & Benkovic, S. J. ( 1980; ). Purification of a complex catalyzing folate cofactor synthesis and transformylation in de novo purine biosynthesis. J Biol Chem 255, 1885–1890.
    [Google Scholar]
  6. Capestany, C. A., Kuboniwa, M., Jung, I. Y., Park, Y., Tribble, G. D. & Lamont, R. J. ( 2006; ). Role of the Porphyromonas gingivalis InlJ protein in homotypic and heterotypic biofilm development. Infect Immun 74, 3002–3005.[CrossRef]
    [Google Scholar]
  7. Capestany, C. A., Tribble, G. D., Maeda, K., Demuth, D. R. & Lamont, R. J. ( 2008; ). Role of the Clp system in stress tolerance, biofilm formation, and intracellular invasion in Porphyromonas gingivalis. J Bacteriol 190, 1436–1446.[CrossRef]
    [Google Scholar]
  8. Cotter, P. A., Melville, S. B., Albrecht, J. A. & Gunsalus, R. P. ( 1997; ). Aerobic regulation of cytochrome d oxidase (cydAB) operon expression in Escherichia coli: roles of Fnr and ArcA in repression and activation. Mol Microbiol 25, 605–615.[CrossRef]
    [Google Scholar]
  9. Curtis, M. A., Aduse-Opoku, J. & Rangarajan, M. ( 2001; ). Cysteine proteases of Porphyromonas gingivalis. Crit Rev Oral Biol Med 12, 192–216.[CrossRef]
    [Google Scholar]
  10. Dahlen, G., Manji, F., Baelum, V. & Fejerskov, O. ( 1992; ). Putative periodontopathogens in “diseased” and “non-diseased” persons exhibiting poor oral hygiene. J Clin Periodontol 19, 35–42.[CrossRef]
    [Google Scholar]
  11. Dashper, S. G., Butler, C. A., Lissel, J. P., Paolini, R. A., Hoffmann, B., Veith, P. D., O'Brien-Simpson, N. M., Snelgrove, S. L., Tsiros, J. T. & Reynolds, E. C. ( 2005; ). A novel Porphyromonas gingivalis FeoB plays a role in manganese accumulation. J Biol Chem 280, 28095–28102.[CrossRef]
    [Google Scholar]
  12. Dev, I. K. & Harvey, R. J. ( 1982; ). Sources of one-carbon units in the folate pathway of Escherichia coli. J Biol Chem 257, 1980–1986.
    [Google Scholar]
  13. Diaz, P. I. & Rogers, A. H. ( 2004; ). The effect of oxygen on the growth and physiology of Porphyromonas gingivalis. Oral Microbiol Immunol 19, 88–94.[CrossRef]
    [Google Scholar]
  14. Diaz, P. I., Zilm, P. S., Wasinger, V., Corthals, G. L. & Rogers, A. H. ( 2004; ). Studies on NADH oxidase and alkyl hydroperoxide reductase produced by Porphyromonas gingivalis. Oral Microbiol Immunol 19, 137–143.[CrossRef]
    [Google Scholar]
  15. Diaz, P. I., Slakeski, N., Reynolds, E. C., Morona, R., Rogers, A. H. & Kolenbrander, P. E. ( 2006; ). Role of oxyR in the oral anaerobe Porphyromonas gingivalis. J Bacteriol 188, 2454–2462.[CrossRef]
    [Google Scholar]
  16. D'mello, R., Hill, S. & Poole, R. K. ( 1996; ). The cytochrome bd quinol oxidase in Escherichia coli has an extremely high oxygen affinity and two oxygen-binding haems: implications for regulation of activity in vivo by oxygen inhibition. Microbiology 142, 755–763.[CrossRef]
    [Google Scholar]
  17. Doel, J. J., Benjamin, N., Hector, M. P., Rogers, M. & Allaker, R. P. ( 2005; ). Evaluation of bacterial nitrate reduction in the human oral cavity. Eur J Oral Sci 113, 14–19.[CrossRef]
    [Google Scholar]
  18. Duerden, B. I. ( 1980; ). The isolation and identification of Bacteroides spp. from the normal human gingival flora. J Med Microbiol 13, 89–101.[CrossRef]
    [Google Scholar]
  19. Duran-Pinedo, A. E., Nishikawa, K. & Duncan, M. J. ( 2007; ). The RprY response regulator of Porphyromonas gingivalis. Mol Microbiol 64, 1061–1074.[CrossRef]
    [Google Scholar]
  20. Egland, P. G., Palmer, R. J., Jr & Kolenbrander, P. E. ( 2004; ). Interspecies communication in Streptococcus gordoniiVeillonella atypica biofilms: signaling in flow conditions requires juxtaposition. Proc Natl Acad Sci U S A 101, 16917–16922.[CrossRef]
    [Google Scholar]
  21. Ezzo, P. J. & Cutler, C. W. ( 2003; ). Microorganisms as risk indicators for periodontal disease. Periodontol 2000 32, 24–35.[CrossRef]
    [Google Scholar]
  22. Fox, C. H. ( 1992; ). New considerations in the prevalence of periodontal disease. Curr Opin Dent 2, 5–11.
    [Google Scholar]
  23. Fujiwara, T., Morishima, S., Takahashi, I. & Hamada, S. ( 1993; ). Molecular cloning and sequencing of the fimbrilin gene of Porphyromonas gingivalis strains and characterization of recombinant proteins. Biochem Biophys Res Commun 197, 241–247.[CrossRef]
    [Google Scholar]
  24. Gennis, R. & Stewart, V. ( 1996; ). Respiration. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, 2nd edn, pp. 217–261. Edited by F. C. Neidhardt, R. Curtiss III, J. L. Ingraham, E. C. C. Lin, K. Brooks Low, B. Magasakie, W. S. Rezniroff, M. Riley, M. Schaechter & H. E. Umbarger. Washington, DC: American Society for Microbiology.
  25. Govantes, F., Orjalo, A. V. & Gunsalus, R. P. ( 2000; ). Interplay between three global regulatory proteins mediates oxygen regulation of the Escherichia coli cytochrome d oxidase (cydAB) operon. Mol Microbiol 38, 1061–1073.
    [Google Scholar]
  26. Han, N., Whitlock, J. & Progulske-Fox, A. ( 1996; ). The hemagglutinin gene A (hagA) of Porphyromonas gingivalis 381 contains four large, contiguous, direct repeats. Infect Immun 64, 4000–4007.
    [Google Scholar]
  27. He, J., Miyazaki, H., Anaya, C., Yu, F., Yeudall, W. A. & Lewis, J. P. ( 2006; ). Role of Porphyromonas gingivalis FeoB2 in metal uptake and oxidative stress protection. Infect Immun 74, 4214–4223.[CrossRef]
    [Google Scholar]
  28. Hendrickson, E. L., Lamont, R. J. & Hackett, M. ( 2008; ). Tools for interpreting large-scale protein profiling in microbiology. J Dent Res 87, 1004–1015.[CrossRef]
    [Google Scholar]
  29. Hiraoka, B. Y., Yamakura, F., Sugio, S. & Nakayama, K. ( 2000; ). A change of the metal-specific activity of a cambialistic superoxide dismutase from Porphyromonas gingivalis by a double mutation of Gln-70 to Gly and Ala-142 to Gln. Biochem J 345, 345–350.[CrossRef]
    [Google Scholar]
  30. Iwami, Y., Abbe, K., Takahashi-Abbe, S. & Yamada, T. ( 1992; ). Acid production by streptococci growing at low pH in a chemostat under anaerobic conditions. Oral Microbiol Immunol 7, 304–308.[CrossRef]
    [Google Scholar]
  31. Klimpel, K. W. & Clark, V. L. ( 1990; ). The RNA polymerases of Porphyromonas gingivalis and Fusobacterium nucleatum are unrelated to the RNA polymerase of Escherichia coli. J Dent Res 69, 1567–1572.[CrossRef]
    [Google Scholar]
  32. Koropatkin, N. M., Martens, E. C., Gordon, J. I. & Smith, T. J. ( 2008; ). Starch catabolism by a prominent human gut symbiont is directed by the recognition of amylose helices. Structure 16, 1105–1115.[CrossRef]
    [Google Scholar]
  33. Lamont, R. J. & Jenkinson, H. F. ( 1998; ). Life below the gum line: pathogenic mechanisms of Porphyromonas gingivalis. Microbiol Mol Biol Rev 62, 1244–1263.
    [Google Scholar]
  34. Lamont, R. J. & Jenkinson, H. F. ( 2000; ). Subgingival colonization by Porphyromonas gingivalis. Oral Microbiol Immunol 15, 341–349.[CrossRef]
    [Google Scholar]
  35. Lewis, J. P. & Macrina, F. L. ( 1998; ). IS195, an insertion sequence-like element associated with protease genes in Porphyromonas gingivalis. Infect Immun 66, 3035–3042.
    [Google Scholar]
  36. Lewis, J. P. & Macrina, F. L. ( 1999; ). Localization of HArep-containing genes on the chromosome of Porphyromonas gingivalis W83. Infect Immun 67, 2619–2623.
    [Google Scholar]
  37. Lewis, J. P., Plata, K., Yu, F., Rosato, A. & Anaya, C. ( 2006; ). Transcriptional organization, regulation and role of the Porphyromonas gingivalis W83 hmu haemin-uptake locus. Microbiology 152, 3367–3382.[CrossRef]
    [Google Scholar]
  38. Lin, D., Moss, K., Beck, J. D., Hefti, A. & Offenbacher, S. ( 2007; ). Persistently high levels of periodontal pathogens associated with preterm pregnancy outcome. J Periodontol 78, 833–841.[CrossRef]
    [Google Scholar]
  39. Loesche, W. J., Lopatin, D. E., Stoll, J., van Poperin, N. & Hujoel, P. P. ( 1992; ). Comparison of various detection methods for periodontopathic bacteria: can culture be considered the primary reference standard? J Clin Microbiol 30, 418–426.
    [Google Scholar]
  40. Maeda, K., Tribble, G. D., Tucker, C. M., Anaya, C., Shizukuishi, S., Lewis, J. P., Demuth, D. R. & Lamont, R. J. ( 2008; ). A Porphyromonas gingivalis tyrosine phosphatase is a multifunctional regulator of virulence attributes. Mol Microbiol 69, 1153–1164.[CrossRef]
    [Google Scholar]
  41. Manganelli, R., Voskuil, M. I., Schoolnik, G. K., Dubnau, E., Gomez, M. & Smith, I. ( 2002; ). Role of the extracytoplasmic-function sigma factor σ H in Mycobacterium tuberculosis global gene expression. Mol Microbiol 45, 365–374.[CrossRef]
    [Google Scholar]
  42. Mercado, F. B., Marshall, R. I. & Bartold, P. M. ( 2003; ). Inter-relationships between rheumatoid arthritis and periodontal disease. A review. J Clin Periodontol 30, 761–772.[CrossRef]
    [Google Scholar]
  43. Meuric, V., Gracieux, P., Tamanai-Shacoori, Z., Perez-Chaparro, J. & Bonnaure-Mallet, M. ( 2008; ). Expression patterns of genes induced by oxidative stress in Porphyromonas gingivalis. Oral Microbiol Immunol 23, 308–314.[CrossRef]
    [Google Scholar]
  44. Miyakawa, H., Honma, K., Qi, M. & Kuramitsu, H. K. ( 2004; ). Interaction of Porphyromonas gingivalis with low-density lipoproteins: implications for a role for periodontitis in atherosclerosis. J Periodontal Res 39, 1–9.[CrossRef]
    [Google Scholar]
  45. Nagy, K. N., Sonkodi, I., Szoke, I., Nagy, E. & Newman, H. N. ( 1998; ). The microflora associated with human oral carcinomas. Oral Oncol 34, 304–308.[CrossRef]
    [Google Scholar]
  46. Naito, M., Hirakawa, H., Yamashita, A., Ohara, N., Shoji, M., Yukitake, H., Nakayama, K., Toh, H., Yoshimura, F. & other authors ( 2008; ). Determination of the genome sequence of Porphyromonas gingivalis strain ATCC 33277 and genomic comparison with strain W83 revealed extensive genome rearrangements in P. gingivalis. DNA Res 15, 215–225.[CrossRef]
    [Google Scholar]
  47. Nakayama, K. ( 1990; ). The superoxide dismutase-encoding gene of the obligately anaerobic bacterium Bacteroides gingivalis. Gene 96, 149–150.[CrossRef]
    [Google Scholar]
  48. Nakayama, K. ( 1994; ). Rapid viability loss on exposure to air in a superoxide dismutase-deficient mutant of Porphyromonas gingivalis. J Bacteriol 176, 1939–1943.
    [Google Scholar]
  49. Nelson, K. E., Fleischmann, R. D., DeBoy, R. T., Paulsen, I. T., Fouts, D. E., Eisen, J. A., Daugherty, S. C., Dodson, R. J., Durkin, A. S. & other authors ( 2003; ). Complete genome sequence of the oral pathogenic bacterium Porphyromonas gingivalis strain W83. J Bacteriol 185, 5591–5601.[CrossRef]
    [Google Scholar]
  50. Nguyen, K. A., Zylicz, J., Szczesny, P., Sroka, A., Hunter, N. & Potempa, J. ( 2009; ). Verification of a topology model of PorT as an integral outer-membrane protein in Porphyromonas gingivalis. Microbiology 155, 328–337.[CrossRef]
    [Google Scholar]
  51. Ohara, N., Kikuchi, Y., Shoji, M., Naito, M. & Nakayama, K. ( 2006; ). Superoxide dismutase-encoding gene of the obligate anaerobe Porphyromonas gingivalis is regulated by the redox-sensing transcription activator OxyR. Microbiology 152, 955–966.[CrossRef]
    [Google Scholar]
  52. Ohta, H., Gottschal, J. C., Fukui, K. & Kato, K. ( 1991; ). Aspartate and asparagine as electron acceptors for Wolinella recta. Oral Microbiol Immunol 6, 76–80.[CrossRef]
    [Google Scholar]
  53. Park, Y., Simionato, M. R., Sekiya, K., Murakami, Y., James, D., Chen, W., Hackett, M., Yoshimura, F., Demuth, D. R. & Lamont, R. J. ( 2005; ). Short fimbriae of Porphyromonas gingivalis and their role in coadhesion with Streptococcus gordonii. Infect Immun 73, 3983–3989.[CrossRef]
    [Google Scholar]
  54. Perera, A., Parkes, H. G., Herz, H., Haycock, P., Blake, D. R. & Grootveld, M. C. ( 1997; ). High resolution 1H NMR investigations of the reactivities of α-keto acid anions with hydrogen peroxide. Free Radic Res 26, 145–157.[CrossRef]
    [Google Scholar]
  55. Pucher, J. & Stewart, J. ( 2004; ). Periodontal disease and diabetes mellitus. Curr Diab Rep 4, 46–50.[CrossRef]
    [Google Scholar]
  56. Ratnayake, D. B., Wai, S. N., Shi, Y., Amako, K., Nakayama, H. & Nakayama, K. ( 2000; ). Ferritin from the obligate anaerobe Porphyromonas gingivalis: purification, gene cloning and mutant studies. Microbiology 146, 1119–1127.
    [Google Scholar]
  57. Rocha, E. R., Tzianabos, A. O. & Smith, C. J. ( 2007; ). Thioredoxin reductase is essential for thiol/disulfide redox control and oxidative stress survival of the anaerobe Bacteroides fragilis. J Bacteriol 189, 8015–8023.[CrossRef]
    [Google Scholar]
  58. Roth, B., Tidwell, M. Y., Ferone, R., Baccanari, D. P., Sigel, C. W., DeAngelis, D. & Elwell, L. P. ( 1989; ). 2,4-Diamino-5-benzylpyrimidines as antibacterial agents. 13. Some alkenyl derivatives with high in vitro activity against anaerobic organisms. J Med Chem 32, 1949–1958.[CrossRef]
    [Google Scholar]
  59. Sato, K., Sakai, E., Veith, P. D., Shoji, M., Kikuchi, Y., Yukitake, H., Ohara, N., Naito, M., Okamoto, K. & other authors ( 2005; ). Identification of a new membrane-associated protein that influences transport/maturation of gingipains and adhesins of Porphyromonas gingivalis. J Biol Chem 280, 8668–8677.[CrossRef]
    [Google Scholar]
  60. Scholle, R. R., Steffen, H. E., Goodman, H. J. & Woods, D. R. ( 1990; ). Expression and regulation of a Bacteroides fragilis sucrose utilization system cloned in Escherichia coli. Appl Environ Microbiol 56, 1944–1948.
    [Google Scholar]
  61. Schultz, J. E. & Breznak, J. A. ( 1979; ). Cross-feeding of lactate between Streptococcus lactis and Bacteroides sp. isolated from termite hindguts. Appl Environ Microbiol 37, 1206–1210.
    [Google Scholar]
  62. Shoji, M., Ratnayake, D. B., Shi, Y., Kadowaki, T., Yamamoto, K., Yoshimura, F., Akamine, A., Curtis, M. A. & Nakayama, K. ( 2002; ). Construction and characterization of a nonpigmented mutant of Porphyromonas gingivalis: cell surface polysaccharide as an anchorage for gingipains. Microbiology 148, 1183–1191.
    [Google Scholar]
  63. Slansky, J. E. & Farnham, P. J. ( 1996; ). Transcriptional regulation of the dihydrofolate reductase gene. Bioessays 18, 55–62.[CrossRef]
    [Google Scholar]
  64. Slots, J. ( 1986; ). Bacterial specificity in adult periodontitis. A summary of recent work. J Clin Periodontol 13, 912–917.[CrossRef]
    [Google Scholar]
  65. Takahashi, N. & Yamada, T. ( 1999; ). Glucose and lactate metabolism by Actinomyces naeslundii. Crit Rev Oral Biol Med 10, 487–503.[CrossRef]
    [Google Scholar]
  66. Takahashi, N., Sato, T. & Yamada, T. ( 2000; ). Metabolic pathways for cytotoxic end product formation from glutamate- and aspartate-containing peptides by Porphyromonas gingivalis. J Bacteriol 182, 4704–4710.[CrossRef]
    [Google Scholar]
  67. Touati, D. ( 2000; ). Iron and oxidative stress in bacteria. Arch Biochem Biophys 373, 1–6.[CrossRef]
    [Google Scholar]
  68. Ueshima, J., Shoji, M., Ratnayake, D. B., Abe, K., Yoshida, S., Yamamoto, K. & Nakayama, K. ( 2003; ). Purification, gene cloning, gene expression, and mutants of Dps from the obligate anaerobe Porphyromonas gingivalis. Infect Immun 71, 1170–1178.[CrossRef]
    [Google Scholar]
  69. van Steenbergen, T. J., Petit, M. D., Scholte, L. H., van der Velden, U. & de Graaff, J. ( 1993; ). Transmission of Porphyromonas gingivalis between spouses. J Clin Periodontol 20, 340–345.[CrossRef]
    [Google Scholar]
  70. Vetting, M. W., de Carvalho, L. P. S., Yu, M., Hegde, S. S., Magnet, S., Roderick, S. L. & Blanchard, J. S. ( 2005; ). Structure and functions of the GNAT superfamily of acetyltransferases. Arch Biochem Biophys 433, 212–226.[CrossRef]
    [Google Scholar]
  71. Wan, X. Y., Zhou, Y., Yan, Z. Y., Wang, H. L., Hou, Y. D. & Jin, D. Y. ( 1997; ). Scavengase p20: a novel family of bacterial antioxidant enzymes. FEBS Lett 407, 32–36.[CrossRef]
    [Google Scholar]
  72. Wang, H. & Gunsalus, R. P. ( 2000; ). The nrfA and nirB nitrite reductase operons in Escherichia coli are expressed differently in response to nitrate than to nitrite. J Bacteriol 182, 5813–5822.[CrossRef]
    [Google Scholar]
  73. Whitehead, T. R. & Rabinowitz, J. C. ( 1988; ). Nucleotide sequence of the Clostridium acidiurici (“Clostridium acidi-urici”) gene for 10-formyltetrahydrofolate synthetase shows extensive amino acid homology with the trifunctional enzyme C1-tetrahydrofolate synthase from Saccharomyces cerevisiae. J Bacteriol 170, 3255–3261.
    [Google Scholar]
  74. Whitehead, T. R., Park, M. & Rabinowitz, J. C. ( 1988; ). Distribution of 10-formyltetrahydrofolate synthetase in eubacteria. J Bacteriol 170, 995–997.
    [Google Scholar]
  75. Yang, J., Ogawa, Y., Camakaris, H., Shimada, T., Ishihama, A. & Pittard, A. J. ( 2007; ). folA, a new member of the TyrR regulon in Escherichia coli K-12. J Bacteriol 189, 6080–6084.[CrossRef]
    [Google Scholar]
  76. Yim, M. B., Berlett, B. S., Chock, P. B. & Stadtman, E. R. ( 1990; ). Manganese(II)-bicarbonate-mediated catalytic activity for hydrogen peroxide dismutation and amino acid oxidation: detection of free radical intermediates. Proc Natl Acad Sci U S A 87, 394–398.[CrossRef]
    [Google Scholar]
  77. Zhou, Y., Wan, X. Y., Wang, H. L., Yan, Z. Y., Hou, Y. D. & Jin, D. Y. ( 1997; ). Bacterial scavengase p20 is structurally and functionally related to peroxiredoxins. Biochem Biophys Res Commun 233, 848–852.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.027953-0
Loading
/content/journal/micro/10.1099/mic.0.027953-0
Loading

Data & Media loading...

Supplements

[PDF](27 KB)

PDF

[PDF](746 KB)

PDF

Genes upregulated in bacteria grown in the presence of oxygen (1.4-fold upregulation of genes) [PDF](106 KB)

PDF

Genes downregulated in bacteria grown in the presence of oxygen (1.4-fold downregulation of genes) [PDF](107 KB)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error