1887

Abstract

Before its uptake and oxidation by purple sulfur bacteria, elemental sulfur probably first has to be mobilized. To obtain more insight into this mobilization process in the phototrophic purple sulfur bacterium , we used HPLC analysis and X-ray absorption near-edge structure (XANES) spectroscopy for the detection and identification of sulfur compounds in culture supernatants and bacterial cells. We intended to identify soluble sulfur compounds that specifically occur during growth on elemental sulfur, and therefore compared spectra of cultures grown on sulfur with those of cultures grown on sulfide or thiosulfate. While various unexpected oxidized organic sulfur species (sulfones, C–SO–C, and sulfonates, ) were observed via XANES spectroscopy in the supernatants, we obtained evidence for the presence of monosulfane sulfonic acids inside the bacterial cells by HPLC analysis. The concentrations of the latter compounds showed a tight correlation with the content of intracellular sulfur, reaching their maximum when sulfur began to be oxidized. None of the detected sulfur compounds appeared to be a specific soluble intermediate or product of elemental sulfur mobilization. It therefore seems unlikely that mobilization of elemental sulfur by purple sulfur bacteria involves excretion of soluble sulfur-containing substances that would be able to act on substrate distant from the cells.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.027904-0
2009-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/8/2766.html?itemId=/content/journal/micro/10.1099/mic.0.027904-0&mimeType=html&fmt=ahah

References

  1. Bacon M., Ingledew W. J. 1989; The reductive reactions of Thiobacillus ferrooxidans on sulphur and selenium. FEMS Microbiol Lett 58:189–194
    [Google Scholar]
  2. Brune D. C. 1995; Sulfur compounds as photosynthetic electron donors. In Anoxygenic Photosynthetic Bacteria pp 847–870 Edited by Blankenship R. E., Madigan M. T., Bauer C. E. Dordrecht: Kluwer;
    [Google Scholar]
  3. Cort J. R., Selan U. M., Schulte A., Grimm F., Kennedy M. A., Dahl C. 2008; Allochromatium vinosum DsrC: solution-state NMR structure, redox properties and interaction with DsrEFH, a protein essential for purple sulfur bacterial sulfur oxidation. J Mol Biol 382:692–707
    [Google Scholar]
  4. Dahl C. 2008; Inorganic sulfur compounds as electron donors in purple sulfur bacteria. In Sulfur in Phototrophic Organisms pp 289–317 Edited by Hell R., Dahl C., Knaff D. B., Leustek T. Dordrecht: Springer;
    [Google Scholar]
  5. Dahl C., Schulte A., Stockdreher Y., Hong C., Grimm F., Sander J., Kim R., Kim S.-H., Shin D. H. 2008; Structural and molecular genetic insight into a wide-spread bacterial sulfur oxidation pathway. J Mol Biol 384:1287–1300
    [Google Scholar]
  6. Franz B., Lichtenberg H., Hormes J., Modrow H., Dahl C., Prange A. 2007; Utilization of solid “elemental” sulfur by the phototrophic purple sulfur bacterium Allochromatium vinosum: A sulfur K-edge XANES spectroscopy study. Microbiology 153:1268–1274
    [Google Scholar]
  7. Franz B., Lichtenberg H., Hormes J., Dahl C., Prange A. 2009; The speciation of soluble sulfur compounds in bacterial culture fluids by X-ray absorption near edge structure spectroscopy. Environ Technol in press
    [Google Scholar]
  8. Frigaard N.-U., Dahl C. 2009; Sulfur metabolism in phototrophic sulfur bacteria. Adv Microb Physiol 54:103–200
    [Google Scholar]
  9. Gehrke T., Telegdi J., Thierry D., Sand W. 1998; Importance of extracellular polymeric substances from Thiobacillus ferrooxidans for bioleaching. Appl Environ Microbiol 64:2743–2747
    [Google Scholar]
  10. Hensen D., Sperling D., Trüper H. G., Brune D. C., Dahl C. 2006; Thiosulfate oxidation in the phototrophic sulfur bacterium Allochromatium vinosum . Mol Microbiol 62:794–810
    [Google Scholar]
  11. Hormes J., Scott J. D., Suller V. P. 2006; Facility update: the Center for Advanced Microstructures and Devices: a status report. Synchr Rad News 19:27–30
    [Google Scholar]
  12. Lemonnier M., Collet O., Depautex C., Esteva J.-M., Raoux D. 1978; High vacuum two crystal soft X-ray monochromator. Nucl Instrum Methods 152:109–111
    [Google Scholar]
  13. Lvov Y. Möhwald H. (editors) 2000 Protein Architecture: Interfacing Molecular Assemblies and Immobilization Biotechnology New York: Marcel Dekker Publications;
    [Google Scholar]
  14. Modrow H., Visel F., Zimmer R., Hormes J. 2001; Monitoring thermal oxidation of sulfur crosslinks in SRB-elastomers by quantitative analysis of sulfur K-edge XANES-spectra. Rubber Chem Tech 74:281–294
    [Google Scholar]
  15. Prange A., Chauvistré R., Modrow H., Hormes J., Trüper H. G., Dahl C. 2002; Quantitative speciation of sulfur in bacterial sulfur globules: X-ray absorption spectroscopy reveals at least three different speciations of sulfur. Microbiology 148:267–276
    [Google Scholar]
  16. Prange A., Birzele B., Krämer J., Chauvistré R., Modrow H., Hormes J., Köhler P. 2003; Characterization of sulfur speciation in low molecular weight subunits of glutenin after reoxidation with potassium iodate and potassium bromate at different pH values using X-ray absorption near edge structure (XANES) spectroscopy. J Agric Food Chem 51:7431–7438
    [Google Scholar]
  17. Prange A., Engelhardt H., Trüper H. G., Dahl C. 2004; The role of the sulfur globule proteins of Allochromatium vinosum: mutagenesis of the sulfur globule protein genes and expression studies by real-time RT PCR. Arch Microbiol 182:165–174
    [Google Scholar]
  18. Prange A., Modrow H., Hormes J., Krämer J., Köhler P. 2005; Influence of mycotoxin producing fungi ( Fusarium, Aspergillus, Penicillium) on gluten proteins during suboptimal storage of wheat after harvest and competitive interactions between field and storage fungi. J Agric Food Chem 53:6930–6938
    [Google Scholar]
  19. Ressler T. 1998; WinXAS: a program for X-ray absorption spectroscopy data analysis under MS-Windows. J Synchrotron Radiat 5:118–122
    [Google Scholar]
  20. Rethmeier J., Rabenstein A., Langer M., Fischer U. 1997; Detection of traces of oxidized and reduced sulfur compounds in small samples by combination of different high-performance liquid chromatography methods. J Chromatogr A 760:295–302
    [Google Scholar]
  21. Rohwerder T., Sand W. 2003; The sulfane sulfur of persulfides is the actual substrate of the sulfur-oxidizing enzymes from Acidithiobacillus and Acidiphilium spp. Microbiology 149:1699–1709
    [Google Scholar]
  22. Steudel R. 1996; Das gelbe Element und seine erstaunliche Vielseitigkeit. Chem Unserer Zeit 30:226–234
    [Google Scholar]
  23. Steudel R., Holdt G., Visscher P. T., van Gemerden H. 1990; Search for polythionates in cultures of Chromatium vinosum after sulfide incubation. Arch Microbiol 153:432–437
    [Google Scholar]
  24. Thiele H. H. 1968; Sulfur metabolism in Thiorhodaceae. V. Enzymes of sulfur metabolism in Thiocapsa floridana and Chromatium species. Antonie Van Leeuwenhoek 34:350–356
    [Google Scholar]
  25. Trüper H. G. 1984; Phototrophic bacteria and their sulfur metabolism. In Sulfur, its Significance for Chemistry, for the Geo-, Bio-, and Cosmosphere and Technology pp 367–382 Edited by Müller A., Krebs B. Amsterdam: Elsevier Science Publishers B.V;
    [Google Scholar]
  26. Trüper H. G., Fischer U. 1982; Anaerobic oxidation of sulphur compounds as electron donors for bacterial photosynthesis. Philos Trans R Soc Lond B Biol Sci 298:529–542
    [Google Scholar]
  27. Vairavamurthy A., Zhou W., Eglinton T., Manowitz B. 1994; Sulfonates: a novel class of organic sulfur compounds in marine sediments. Geochim Cosmochim Acta 58:4681–4687
    [Google Scholar]
  28. Yagi S., Kitai S., Kimura T. 1971; Oxidation of elemental sulfur to thiosulfate by Streptomyces . Appl Microbiol 22:157–159
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.027904-0
Loading
/content/journal/micro/10.1099/mic.0.027904-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error