From a consortium sequence to a unified sequence: the 168 reference genome a decade later Free

Abstract

Comparative genomics is the cornerstone of identification of gene functions. The immense number of living organisms precludes experimental identification of functions except in a handful of model organisms. The bacterial domain is split into large branches, among which the Firmicutes occupy a considerable space. has been the model of Firmicutes for decades and its genome has been a reference for more than 10 years. Sequencing the genome involved more than 30 laboratories, with different expertises, in a attempt to make the most of the experimental information that could be associated with the sequence. This had the expected drawback that the sequencing expertise was quite varied among the groups involved, especially at a time when sequencing genomes was extremely hard work. The recent development of very efficient, fast and accurate sequencing techniques, in parallel with the development of high-level annotation platforms, motivated the present resequencing work. The updated sequence has been reannotated in agreement with the UniProt protein knowledge base, keeping in perspective the split between the paleome (genes necessary for sustaining and perpetuating life) and the cenome (genes required for occupation of a niche, suggesting here that is an epiphyte). This should permit investigators to make reliable inferences to prepare validation experiments in a variety of domains of bacterial growth and development as well as build up accurate phylogenies.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.027839-0
2009-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/6/1758.html?itemId=/content/journal/micro/10.1099/mic.0.027839-0&mimeType=html&fmt=ahah

References

  1. Aguilar C., Vlamakis H., Losick R., Kolter R. 2007; Thinking about Bacillus subtilis as a multicellular organism. Curr Opin Microbiol 10:638–643
    [Google Scholar]
  2. Anagnostopoulos C., Spizizen J. 1961; Requirements for transformation in Bacillus subtilis . J Bacteriol 81:741–746
    [Google Scholar]
  3. Andre G., Even S., Putzer H., Burguiere P., Croux C., Danchin A., Martin-Verstraete I., Soutourina O. 2008; S-box and T-box riboswitches and antisense RNA control a sulfur metabolic operon of Clostridium acetobutylicum . Nucleic Acids Res 36:5955–5969
    [Google Scholar]
  4. Anton B. P., Saleh L., Benner J. S., Raleigh E. A., Kasif S., Roberts R. J. 2008; RimO, a MiaB-like enzyme, methylthiolates the universally conserved Asp88 residue of ribosomal protein S12 in Escherichia coli . Proc Natl Acad Sci U S A 105:1826–1831
    [Google Scholar]
  5. Bailly-Bechet M., Danchin A., Iqbal M., Marsili M., Vergassola M. 2006; Codon usage domains over bacterial chromosomes. PLOS Comput Biol 2:e37
    [Google Scholar]
  6. Beck L. L., Smith T. G., Hoover T. R. 2007; Look, no hands! Unconventional transcriptional activators in bacteria. Trends Microbiol 15:530–537
    [Google Scholar]
  7. Begley T. P., Chatterjee A., Hanes J. W., Hazra A., Ealick S. E. 2008; Cofactor biosynthesis – still yielding fascinating new biological chemistry. Curr Opin Chem Biol 12:118–125
    [Google Scholar]
  8. Belitsky B. R., Sonenshein A. L. 1998; Role and regulation of Bacillus subtilis glutamate dehydrogenase genes. J Bacteriol 180:6298–6305
    [Google Scholar]
  9. Bentley D. R. 2006; Whole-genome re-sequencing. Curr Opin Genet Dev 16:545–552
    [Google Scholar]
  10. Berger B. J., English S., Chan G., Knodel M. H. 2003; Methionine regeneration and aminotransferases in Bacillus subtilis , Bacillus cereus , and Bacillus anthracis . J Bacteriol 185:2418–2431
    [Google Scholar]
  11. Bisicchia P., Noone D., Lioliou E., Howell A., Quigley S., Jensen T., Jarmer H., Devine K. M. 2007; The essential YycFG two-component system controls cell wall metabolism in Bacillus subtilis . Mol Microbiol 65:180–200
    [Google Scholar]
  12. Bocs S., Cruveiller S., Vallenet D., Nuel G., Medigue C. 2003; AMIGene: Annotation of MIcrobial Genes. Nucleic Acids Res 31:3723–3726
    [Google Scholar]
  13. Burguiere P., Auger S., Hullo M. F., Danchin A., Martin-Verstraete I. 2004; Three different systems participate in l-cystine uptake in Bacillus subtilis . J Bacteriol 186:4875–4884
    [Google Scholar]
  14. Carr J. F., Hamburg D. M., Gregory S. T., Limbach P. A., Dahlberg A. E. 2006; Effects of streptomycin resistance mutations on posttranslational modification of ribosomal protein S12. J Bacteriol 188:2020–2023
    [Google Scholar]
  15. Caspi R., Foerster H., Fulcher C. A., Kaipa P., Krummenacker M., Latendresse M., Paley S., Rhee S. Y., Shearer A. G. other authors 2008; The MetaCyc Database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases. Nucleic Acids Res 36:D623–D631
    [Google Scholar]
  16. Chapman-Smith A., Mulhern T. D., Whelan F., Cronan J. E. Jr, Wallace J. C. 2001; The C-terminal domain of biotin protein ligase from E. coli is required for catalytic activity. Protein Sci 10:2608–2617
    [Google Scholar]
  17. Chartier F. J., Couture M. 2007; Substrate-specific interactions with the heme-bound oxygen molecule of nitric-oxide synthase. J Biol Chem 282:20877–20886
    [Google Scholar]
  18. Christiansen L. C., Schou S., Nygaard P., Saxild H. H. 1997; Xanthine metabolism in Bacillus subtilis : characterization of the xpt-pbuX operon and evidence for purine- and nitrogen-controlled expression of genes involved in xanthine salvage and catabolism. J Bacteriol 179:2540–2550
    [Google Scholar]
  19. Claverys J. P., Havarstein L. S. 2007; Cannibalism and fratricide: mechanisms and raisons d'être. Nat Rev Microbiol 5:219–229
    [Google Scholar]
  20. Danchin A. 2008; Natural selection and immortality. Biogerontology
    [Google Scholar]
  21. Danchin A. 2009a; A phylogenetic view of bacterial ribonucleases. Prog Nucleic Acid Res Mol Biol 85:1–41
    [Google Scholar]
  22. Danchin A. 2009b; Bacteria as computers making computers. FEMS Microbiol Rev 33:3–26
    [Google Scholar]
  23. Danchin A., Fang G., Noria S. 2007; The extant core bacterial proteome is an archive of the origin of life. Proteomics 7:875–889
    [Google Scholar]
  24. Dartois V., Debarbouille M., Kunst F., Rapoport G. 1998; Characterization of a novel member of the DegS-DegU regulon affected by salt stress in Bacillus subtilis . J Bacteriol 180:1855–1861
    [Google Scholar]
  25. de Lorenzo V., Danchin A. 2008; Synthetic biology: discovering new worlds and new words. EMBO Rep 9:822–827
    [Google Scholar]
  26. den Blaauwen T., de Pedro M. A., Nguyen-Disteche M., Ayala J. A. 2008; Morphogenesis of rod-shaped sacculi. FEMS Microbiol Rev 32:321–344
    [Google Scholar]
  27. Dobrindt U., Hochhut B., Hentschel U., Hacker J. 2004; Genomic islands in pathogenic and environmental microorganisms. Nat Rev Microbiol 2:414–424
    [Google Scholar]
  28. Dyson F. J. 1985 Origins of Life Cambridge, UK: Cambridge University Press;
  29. Earl A. M., Losick R., Kolter R. 2008; Ecology and genomics of Bacillus subtilis . Trends Microbiol 16:269–275
    [Google Scholar]
  30. Ellermeier C. D., Hobbs E. C., Gonzalez-Pastor J. E., Losick R. 2006; A three-protein signaling pathway governing immunity to a bacterial cannibalism toxin. Cell 124:549–559
    [Google Scholar]
  31. Errington J. 2003; Regulation of endospore formation in Bacillus subtilis . Nat Rev Microbiol 1:117–126
    [Google Scholar]
  32. Fang G., Rocha E., Danchin A. 2005; How essential are nonessential genes?. Mol Biol Evol 22:2147–2156
    [Google Scholar]
  33. Formstone A., Carballido-Lopez R., Noirot P., Errington J., Scheffers D. J. 2008; Localization and interactions of teichoic acid synthetic enzymes in Bacillus subtilis . J Bacteriol 190:1812–1821
    [Google Scholar]
  34. Fouet A., Arnaud M., Klier A., Rapoport G. 1987; Bacillus subtilis sucrose-specific enzyme II of the phosphotransferase system: expression in Escherichia coli and homology to enzymes II from enteric bacteria. Proc Natl Acad Sci U S A 84:8773–8777
    [Google Scholar]
  35. Frangeul L., Nelson K. E., Buchrieser C., Danchin A., Glaser P., Kunst F. 1999; Cloning and assembly strategies in microbial genome projects. Microbiology 145:2625–2634
    [Google Scholar]
  36. Frenkiel-Krispin D., Minsky A. 2006; Nucleoid organization and the maintenance of DNA integrity in E. coli , B. subtilis and D. radiodurans . J Struct Biol 156:311–319
    [Google Scholar]
  37. Frey P. A., Hegeman A. D., Ruzicka F. J. 2008; The radical SAM superfamily. Crit Rev Biochem Mol Biol 43:63–88
    [Google Scholar]
  38. Gaidenko T. A., Kim T. J., Weigel A. L., Brody M. S., Price C. W. 2006; The blue-light receptor YtvA acts in the environmental stress signaling pathway of Bacillus subtilis . J Bacteriol 188:6387–6395
    [Google Scholar]
  39. Gilks W. R., Audit B., De Angelis D., Tsoka S., Ouzounis C. A. 2002; Modeling the percolation of annotation errors in a database of protein sequences. Bioinformatics 18:1641–1649
    [Google Scholar]
  40. Glaser P., Kunst F., Arnaud M., Coudart M. P., Gonzales W., Hullo M. F., Ionescu M., Lubochinsky B., Marcelino L. other authors 1993; Bacillus subtilis genome project: cloning and sequencing of the 97 kb region from 325 degrees to 333 degrees. Mol Microbiol 10:371–384
    [Google Scholar]
  41. Goelzer A., Bekkal Brikci F., Martin-Verstraete I., Noirot P., Bessieres P., Aymerich S., Fromion V. 2008; Reconstruction and analysis of the genetic and metabolic regulatory networks of the central metabolism of Bacillus subtilis . BMC Syst Biol 2:20
    [Google Scholar]
  42. Gordon D., Abajian C., Green P. 1998; Consed: a graphical tool for sequence finishing. Genome Res 8:195–202
    [Google Scholar]
  43. Gruber T. M., Gross C. A. 2003; Multiple sigma subunits and the partitioning of bacterial transcription space. Annu Rev Microbiol 57:441–466
    [Google Scholar]
  44. Haldenwang W. G. 1995; The sigma factors of Bacillus subtilis . Microbiol Rev 59:1–30
    [Google Scholar]
  45. Harwood C. R., Wipat A. 1996; Sequencing and functional analysis of the genome of Bacillus subtilis strain 168. FEBS Lett 389:84–87
    [Google Scholar]
  46. Hayashi K., Morooka N., Yamamoto Y., Fujita K., Isono K., Choi S., Ohtsubo E., Baba T., Wanner B. L. other authors 2006; Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110. Mol Syst Biol 2; 2006.0007
  47. Hayhurst E. J., Kailas L., Hobbs J. K., Foster S. J. 2008; Cell wall peptidoglycan architecture in Bacillus subtilis . Proc Natl Acad Sci U S A 105:14603–14608
    [Google Scholar]
  48. Helmann J. D. 1999; Anti-sigma factors. Curr Opin Microbiol 2:135–141
    [Google Scholar]
  49. Helmann J. D. 2002; The extracytoplasmic function (ECF) sigma factors. Adv Microb Physiol 46:47–110
    [Google Scholar]
  50. Herring C. D., Palsson B. O. 2007; An evaluation of Comparative Genome Sequencing (CGS) by comparing two previously-sequenced bacterial genomes. BMC Genomics 8:274
    [Google Scholar]
  51. Hobman J. L., Penn C. W., Pallen M. J. 2007; Laboratory strains of Escherichia coli : model citizens or deceitful delinquents growing old disgracefully?. Mol Microbiol 64:881–885
    [Google Scholar]
  52. Hochgrafe F., Mostertz J., Pother D. C., Becher D., Helmann J. D., Hecker M. 2007; S -Cysteinylation is a general mechanism for thiol protection of Bacillus subtilis proteins after oxidative stress. J Biol Chem 282:25981–25985
    [Google Scholar]
  53. Hoper D., Bernhardt J., Hecker M. 2006; Salt stress adaptation of Bacillus subtilis : a physiological proteomics approach. Proteomics 6:1550–1562
    [Google Scholar]
  54. Hullo M. F., Auger S., Soutourina O., Barzu O., Yvon M., Danchin A., Martin-Verstraete I. 2007; Conversion of methionine to cysteine in Bacillus subtilis and its regulation. J Bacteriol 189:187–197
    [Google Scholar]
  55. Huse S. M., Huber J. A., Morrison H. G., Sogin M. L., Welch D. M. 2007; Accuracy and quality of massively parallel DNA pyrosequencing. Genome Biol 8:R143
    [Google Scholar]
  56. Jenkins A. L., Zhang Y., Ealick S. E., Begley T. P. 2008; Mutagenesis studies on TenA: a thiamin salvage enzyme from Bacillus subtilis . Bioorg Chem 36:29–32
    [Google Scholar]
  57. Joseph P., Fichant G., Quentin Y., Denizot F. 2002; Regulatory relationship of two-component and ABC transport systems and clustering of their genes in the Bacillus / Clostridium group, suggest a functional link between them. J Mol Microbiol Biotechnol 4:503–513
    [Google Scholar]
  58. Julkowska D., Obuchowski M., Holland I. B., Seror S. J. 2005; Comparative analysis of the development of swarming communities of Bacillus subtilis 168 and a natural wild type: critical effects of surfactin and the composition of the medium. J Bacteriol 187:65–76
    [Google Scholar]
  59. Kazmierczak M. J., Wiedmann M., Boor K. J. 2005; Alternative sigma factors and their roles in bacterial virulence. Microbiol Mol Biol Rev 69:527–543
    [Google Scholar]
  60. Kiley P. J., Beinert H. 2003; The role of Fe–S proteins in sensing and regulation in bacteria. Curr Opin Microbiol 6:181–185
    [Google Scholar]
  61. Knizewski L., Ginalski K. 2007; Bacterial DUF199/COG1481 proteins including sporulation regulator WhiA are distant homologs of LAGLIDADG homing endonucleases that retained only DNA binding. Cell Cycle 6:1666–1670
    [Google Scholar]
  62. Kobayashi K., Ogura M., Yamaguchi H., Yoshida K., Ogasawara N., Tanaka T., Fujita Y. 2001; Comprehensive DNA microarray analysis of Bacillus subtilis two-component regulatory systems. J Bacteriol 183:7365–7370
    [Google Scholar]
  63. Kobayashi K., Ehrlich S. D., Albertini A., Amati G., Andersen K. K., Arnaud M., Asai K., Ashikaga S., Aymerich S. other authors 2003; Essential Bacillus subtilis genes. Proc Natl Acad Sci U S A 100:4678–4683
    [Google Scholar]
  64. Kroos L., Yu Y. T. 2000; Regulation of sigma factor activity during Bacillus subtilis development. Curr Opin Microbiol 3:553–560
    [Google Scholar]
  65. Kunst F., Ogasawara N., Moszer I., Albertini A. M., Alloni G., Azevedo V., Bertero M. G., Bessieres P., Bolotin A. other authors 1997; The complete genome sequence of the Gram-positive bacterium Bacillus subtilis . Nature 390:249–256
    [Google Scholar]
  66. Kurland C. G., Canback B., Berg O. G. 2007; The origins of modern proteomes. Biochimie 89:1454–1463
    [Google Scholar]
  67. Kurtz S., Phillippy A., Delcher A. L., Smoot M., Shumway M., Antonescu C., Salzberg S. L. 2004; Versatile and open software for comparing large genomes. Genome Biol 5:R12
    [Google Scholar]
  68. Lechat P., Hummel L., Rousseau S., Moszer I. 2008; GenoList: an integrated environment for comparative analysis of microbial genomes. Nucleic Acids Res 36:D469–D474
    [Google Scholar]
  69. Lewis R. J., Brannigan J. A., Offen W. A., Smith I., Wilkinson A. J. 1998; An evolutionary link between sporulation and prophage induction in the structure of a repressor : anti-repressor complex. J Mol Biol 283:907–912
    [Google Scholar]
  70. Lima T., Auchincloss A. H., Coudert E., Keller G., Michoud K., Rivoire C., Bulliard V., de Castro E., Lachaize C. other authors 2009; HAMAP: a database of completely sequenced microbial proteome sets and manually curated microbial protein families in UniProtKB/Swiss-Prot. Nucleic Acids Res 37:D471–D478
    [Google Scholar]
  71. Margulies M., Egholm M., Altman W. E., Attiya S., Bader J. S., Bemben L. A., Berka J., Braverman M. S., Chen Y. J. other authors 2005; Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380
    [Google Scholar]
  72. Mechold U., Fang G., Ngo S., Ogryzko V., Danchin A. 2007; YtqI from Bacillus subtilis has both oligoribonuclease and pAp-phosphatase activity. Nucleic Acids Res 35:4552–4561
    [Google Scholar]
  73. Medigue C., Rose M., Viari A., Danchin A. 1999; Detecting and analyzing DNA sequencing errors: toward a higher quality of the Bacillus subtilis genome sequence. Genome Res 9:1116–1127
    [Google Scholar]
  74. Meerak J., Yukphan P., Miyashita M., Sato H., Nakagawa Y., Tahara Y. 2008; Phylogeny of gamma-polyglutamic acid-producing Bacillus strains isolated from a fermented locust bean product manufactured in West Africa. J Gen Appl Microbiol 54:159–166
    [Google Scholar]
  75. Merkl R. 2004; SIGI: score-based identification of genomic islands. BMC Bioinformatics 5:22
    [Google Scholar]
  76. Montorsi M., Lorenzetti R. 1993; Heat-stable and heat-labile thymidylate synthases B of Bacillus subtilis : comparison of the nucleotide and amino acid sequences. Mol Gen Genet 239:1–5
    [Google Scholar]
  77. Moszer I., Rocha E. P., Danchin A. 1999; Codon usage and lateral gene transfer in Bacillus subtilis . Curr Opin Microbiol 2:524–528
    [Google Scholar]
  78. Moszer I., Jones L. M., Moreira S., Fabry C., Danchin A. 2002; SubtiList: the reference database for the Bacillus subtilis genome. Nucleic Acids Res 30:62–65
    [Google Scholar]
  79. Nakano M. M., Zuber P. 1998; Anaerobic growth of a “strict aerobe” ( Bacillus subtilis . Annu Rev Microbiol 52:165–190
    [Google Scholar]
  80. Nakano M. M., Geng H., Nakano S., Kobayashi K. 2006; The nitric oxide-responsive regulator NsrR controls ResDE-dependent gene expression. J Bacteriol 188:5878–5887
    [Google Scholar]
  81. Nandy S. K., Bapat P. M., Venkatesh K. V. 2007; Sporulating bacteria prefers predation to cannibalism in mixed cultures. FEBS Lett 581:151–156
    [Google Scholar]
  82. Nicolas P., Bize L., Muri F., Hoebeke M., Rodolphe F., Ehrlich S. D., Prum B., Bessieres P. 2002; Mining Bacillus subtilis chromosome heterogeneities using hidden Markov models. Nucleic Acids Res 30:1418–1426
    [Google Scholar]
  83. Ning Z., Cox A. J., Mullikin J. C. 2001; SSAHA: a fast search method for large DNA databases. Genome Res 11:1725–1729
    [Google Scholar]
  84. Nitschke P., Guerdoux-Jamet P., Chiapello H., Faroux G., Henaut C., Henaut A., Danchin A. 1998; Indigo: a World-Wide-Web review of genomes and gene functions. FEMS Microbiol Rev 22:207–227
    [Google Scholar]
  85. Noirot-Gros M. F., Dervyn E., Wu L. J., Mervelet P., Errington J., Ehrlich S. D., Noirot P. 2002; An expanded view of bacterial DNA replication. Proc Natl Acad Sci U S A 99:8342–8347
    [Google Scholar]
  86. Ogura M., Tanaka T. 2009; The Bacillus subtilis late competence operon comE is transcriptionally regulated by yutB and under post-transcription initiation control by comN ( yrzD ). J Bacteriol 191:949–958
    [Google Scholar]
  87. Paley S. M., Karp P. D. 2006; The Pathway Tools cellular overview diagram and Omics Viewer. Nucleic Acids Res 34:3771–3778
    [Google Scholar]
  88. Pascal G., Medigue C., Danchin A. 2005; Universal biases in protein composition of model prokaryotes. Proteins 60:27–35
    [Google Scholar]
  89. Petersohn A., Brigulla M., Haas S., Hoheisel J. D., Volker U., Hecker M. 2001; Global analysis of the general stress response of Bacillus subtilis . J Bacteriol 183:5617–5631
    [Google Scholar]
  90. Piggot P. J., Hilbert D. W. 2004; Sporulation of Bacillus subtilis . Curr Opin Microbiol 7:579–586
    [Google Scholar]
  91. Rajagopala S. V., Titz B., Goll J., Parrish J. R., Wohlbold K., McKevitt M. T., Palzkill T., Mori H., Finley R. L. Jr, Uetz P. 2007; The protein network of bacterial motility. Mol Syst Biol 3:128
    [Google Scholar]
  92. Raschle T., Amrhein N., Fitzpatrick T. B. 2005; On the two components of pyridoxal 5′-phosphate synthase from Bacillus subtilis . J Biol Chem 280:32291–32300
    [Google Scholar]
  93. Reder A., Hoper D., Weinberg C., Gerth U., Fraunholz M., Hecker M. 2008; The Spx paralogue MgsR (YqgZ) controls a subregulon within the general stress response of Bacillus subtilis . Mol Microbiol 69:1104–1120
    [Google Scholar]
  94. Reuter K., Mofid M. R., Marahiel M. A., Ficner R. 1999; Crystal structure of the surfactin synthetase-activating enzyme Sfp: a prototype of the 4′-phosphopantetheinyl transferase superfamily. EMBO J 18:6823–6831
    [Google Scholar]
  95. Reyes D. Y., Zuber P. 2008; Activation of transcription initiation by Spx: formation of transcription complex and identification of a cis -acting element required for transcriptional activation. Mol Microbiol 69:765–779
    [Google Scholar]
  96. Rocha E. 2002; Is there a role for replication fork asymmetry in the distribution of genes in bacterial genomes?. Trends Microbiol 10:393–395
    [Google Scholar]
  97. Rocha E. P., Viari A., Danchin A. 1998; Oligonucleotide bias in Bacillus subtilis : general trends and taxonomic comparisons. Nucleic Acids Res 26:2971–2980
    [Google Scholar]
  98. Rocha E. P., Danchin A., Viari A. 1999a; Analysis of long repeats in bacterial genomes reveals alternative evolutionary mechanisms in Bacillus subtilis and other competent prokaryotes. Mol Biol Evol 16:1219–1230
    [Google Scholar]
  99. Rocha E. P., Danchin A., Viari A. 1999b; Translation in Bacillus subtilis : roles and trends of initiation and termination, insights from a genome analysis. Nucleic Acids Res 27:3567–3576
    [Google Scholar]
  100. Roll-Hansen N. 1979; Experimental method and spontaneous generation: the controversy between Pasteur and Pouchet, 1859–64. J Hist Med Allied Sci 34:273–292
    [Google Scholar]
  101. Saier M. H. Jr, Goldman S. R., Maile R. R., Moreno M. S., Weyler W., Yang N., Paulsen I. T. 2002; Transport capabilities encoded within the Bacillus subtilis genome. J Mol Microbiol Biotechnol 4:37–67
    [Google Scholar]
  102. Saito S., Kakeshita H., Nakamura K. 2009; Novel small RNA-encoding genes in the intergenic regions of Bacillus subtilis . Gene 428:2–8
    [Google Scholar]
  103. Sauer U., Eikmanns B. J. 2005; The PEP-pyruvate-oxaloacetate node as the switch point for carbon flux distribution in bacteria. FEMS Microbiol Rev 29:765–794
    [Google Scholar]
  104. Saunders C. W., Schmidt B. J., Mirot M. S., Thompson L. D., Guyer M. S. 1984; Use of chromosomal integration in the establishment and expression of blaZ , a Staphylococcus aureus beta-lactamase gene, in Bacillus subtilis . J Bacteriol 157:718–726
    [Google Scholar]
  105. Sekowska A. 1999 Une rencontre du métabolisme du soufre et de l'azote; le métabolisme des polyamines chez Bacillus subtilis PhD thesis Université de Versailles Saint-Quentin-en-Yvelines;
  106. Sekowska A., Kung H. F., Danchin A. 2000; Sulfur metabolism in Escherichia coli and related bacteria: facts and fiction. J Mol Microbiol Biotechnol 2:145–177
    [Google Scholar]
  107. Sekowska A., Robin S., Daudin J. J., Henaut A., Danchin A. 2001; Extracting biological information from DNA arrays: an unexpected link between arginine and methionine metabolism in Bacillus subtilis . Genome Biol 2:RESEARCH0019
    [Google Scholar]
  108. Sekowska A., Denervaud V., Ashida H., Michoud K., Haas D., Yokota A., Danchin A. 2004; Bacterial variations on the methionine salvage pathway. BMC Microbiol 4:9
    [Google Scholar]
  109. Simpson A. J. 2001; Genome sequencing networks. Nat Rev Genet 2:979–983
    [Google Scholar]
  110. Singh K. D., Schmalisch M. H., Stulke J., Gorke B. 2008; Carbon catabolite repression in Bacillus subtilis : quantitative analysis of repression exerted by different carbon sources. J Bacteriol 190:7275–7284
    [Google Scholar]
  111. Sinha S. C., Sprang S. R. 2006; Structures, mechanism, regulation and evolution of class III nucleotidyl cyclases. Rev Physiol Biochem Pharmacol 157:105–140
    [Google Scholar]
  112. Sneath P. H. A. 1986; Endospore-forming Gram-positive rods and cocci. In Bergey's Manual of Systematic Bacteriolog y pp 1105–1139 Edited by Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. Baltimore: Williams & Wilkins Co;
    [Google Scholar]
  113. Sonenshein A. L. 2007; Control of key metabolic intersections in Bacillus subtilis . Nat Rev Microbiol 5:917–927
    [Google Scholar]
  114. Soupene E., van Heeswijk W. C., Plumbridge J., Stewart V., Bertenthal D., Lee H., Prasad G., Paliy O., Charernnoppakul P., Kustu S. 2003; Physiological studies of Escherichia coli strain MG1655: growth defects and apparent cross-regulation of gene expression. J Bacteriol 185:5611–5626
    [Google Scholar]
  115. Srivatsan A., Han Y., Peng J., Tehranchi A. K., Gibbs R., Wang J. D., Chen R. 2008; High-precision, whole-genome sequencing of laboratory strains facilitates genetic studies. PLoS Genet 4:e1000139
    [Google Scholar]
  116. Sterk P., Kersey P. J., Apweiler R. 2006; Genome reviews: standardizing content and representation of information about complete genomes. OMICS 10:114–118
    [Google Scholar]
  117. Tadesse S., Graumann P. L. 2007; DprA/Smf protein localizes at the DNA uptake machinery in competent Bacillus subtilis cells. BMC Microbiol 7:105
    [Google Scholar]
  118. Tamames J., Gonzalez-Moreno M., Mingorance J., Valencia A., Vicente M. 2001; Bringing gene order into bacterial shape. Trends Genet 17:124–126
    [Google Scholar]
  119. Tamburini E., Leon A. G., Perito B., Mastromei G. 2003; Characterization of bacterial pectinolytic strains involved in the water retting process. Environ Microbiol 5:730–736
    [Google Scholar]
  120. Tanous C., Soutourina O., Raynal B., Hullo M. F., Mervelet P., Gilles A. M., Noirot P., Danchin A., England P., Martin-Verstraete I. 2008; The CymR regulator in complex with the enzyme CysK controls cysteine metabolism in Bacillus subtilis . J Biol Chem 283:35551–35560
    [Google Scholar]
  121. Tozzi M. G., Camici M., Mascia L., Sgarrella F., Ipata P. L. 2006; Pentose phosphates in nucleoside interconversion and catabolism. FEBS J 273:1089–1101
    [Google Scholar]
  122. Vallenet D., Labarre L., Rouy Z., Barbe V., Bocs S., Cruveiller S., Lajus A., Pascal G., Scarpelli C., Medigue C. 2006; MaGe: a microbial genome annotation system supported by synteny results. Nucleic Acids Res 34:53–65
    [Google Scholar]
  123. Van Arsdell S. W., Perkins J. B., Yocum R. R., Luan L., Howitt C. L., Chatterjee N. P., Pero J. G. 2005; Removing a bottleneck in the Bacillus subtilis biotin pathway: BioA utilizes lysine rather than S -adenosylmethionine as the amino donor in the KAPA-to-DAPA reaction. Biotechnol Bioeng 91:75–83
    [Google Scholar]
  124. van Schaik W., Abee T. 2005; The role of sigmaB in the stress response of Gram-positive bacteria – targets for food preservation and safety. Curr Opin Biotechnol 16:218–224
    [Google Scholar]
  125. Wang Z. Q., Lawson R. J., Buddha M. R., Wei C. C., Crane B. R., Munro A. W., Stuehr D. J. 2007; Bacterial flavodoxins support nitric oxide production by Bacillus subtilis nitric-oxide synthase. J Biol Chem 282:2196–2202
    [Google Scholar]
  126. Yamazaki S., Yamazaki J., Nishijima K., Otsuka R., Mise M., Ishikawa H., Sasaki K., Tago S., Isono K. 2006; Proteome analysis of an aerobic hyperthermophilic crenarchaeon, Aeropyrum pernix K1. Mol Cell Proteomics 5:811–823
    [Google Scholar]
  127. You C., Lu H., Sekowska A., Fang G., Wang Y., Gilles A. M., Danchin A. 2005; The two authentic methionine aminopeptidase genes are differentially expressed in Bacillus subtilis . BMC Microbiol 5:57
    [Google Scholar]
  128. You C., Sekowska A., Francetic O., Martin-Verstraete I., Wang Y., Danchin A. 2008; Spx mediates oxidative stress regulation of the methionine sulfoxide reductases operon in Bacillus subtilis . BMC Microbiol 8:128
    [Google Scholar]
  129. Yudkin M. D., Clarkson J. 2005; Differential gene expression in genetically identical sister cells: the initiation of sporulation in Bacillus subtilis . Mol Microbiol 56:578–589
    [Google Scholar]
  130. Zeigler D. R., Pragai Z., Rodriguez S., Chevreux B., Muffler A., Albert T., Bai R., Wyss M., Perkins J. B. 2008; The origins of 168, W23, and other Bacillus subtilis legacy strains. J Bacteriol 190:6983–6995
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.027839-0
Loading
/content/journal/micro/10.1099/mic.0.027839-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF

Supplementary material 4

PDF

Most cited Most Cited RSS feed