A family of fibrinogen-binding MSCRAMMs from Free

Abstract

We report that three (EF0089, EF2505 and EF1896, renamed here Fss1, Fss2 and Fss3, respectively, for urface protein) of the recently predicted MSCRAMMs (microbial surface components recognizing adhesive matrix molecules) in strain V583 bind fibrinogen (Fg). Despite an absence of extensive primary sequence homology, the three proteins appear to be related structurally. Within the N-terminal regions of the three enterococcal proteins, we identified pairs of putative IgG-like modules with a high degree of predicted structural similarity to the Fg-binding N2 and N3 domains of the staphylococcal MSCRAMMs ClfA and SdrG. A second N2N3-like segment was predicted in Fss1. Far-UV circular dichroism spectroscopy revealed that all four predicted N2N3-like regions are composed mainly of -sheets with only a minor proportion of -helices, which is characteristic of Ig-like folded domains. Three of the four identified enterococcal N2N3-like regions showed potent dose-dependent binding to Fg. However, the specificity of the Fg-binding MSCRAMMs differs, as indicated by far-Western blots, which showed that recombinant segments of the MSCRAMMs bound different Fg polypeptide chains. Enterococci grown in serum-supplemented broth adhere to Fg-coated surfaces, and inactivation in strain OG1RF of the gene encoding Fss2 resulted in reduced adherence, whilst complementation of the mutant restored full Fg adherence. Thus, contains a family of MSCRAMMs that structurally and functionally resemble the Fg-binding MSCRAMMs of staphylococci.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.027821-0
2009-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/7/2390.html?itemId=/content/journal/micro/10.1099/mic.0.027821-0&mimeType=html&fmt=ahah

References

  1. Bourgogne A., Garsin D. A., Qin X., Singh K. V., Sillanpää J., Yerrapragada S., Ding Y., Dugan-Rocha S., Buhay C. other authors 2008; Large scale variation in Enterococcus faecalis illustrated by the genome analysis of strain OG1RF. Genome Biol 9:R110
    [Google Scholar]
  2. Bowden M. G., Heuck A. P., Ponnuraj K., Kolosova E., Choe D., Gurusiddappa S., Narayana S. V., Johnson A. E., Höök M. 2008; Evidence for the “dock, lock, and latch” ligand binding mechanism of the staphylococcal microbial surface component recognizing adhesive matrix molecules (MSCRAMM) SdrG. J Biol Chem 283:638–647
    [Google Scholar]
  3. Bryan E. M., Bae T., Kleerebezem M., Dunny G. M. 2000; Improved vectors for nisin-controlled expression in Gram-positive bacteria. Plasmid 44:183–190
    [Google Scholar]
  4. Davis S. L., Gurusiddappa S., McCrea K. W., Perkins S., Höök M. 2001; SdrG, a fibrinogen-binding bacterial adhesin of the microbial surface components recognizing adhesive matrix molecules subfamily from Staphylococcus epidermidis, targets the thrombin cleavage site in the B β chain. J Biol Chem 276:27799–27805
    [Google Scholar]
  5. Deivanayagam C. C., Rich R. L., Carson M., Owens R. T., Danthuluri S., Bice T., Höök M., Narayana S. V. 2000; Novel fold and assembly of the repetitive B region of the Staphylococcus aureus collagen-binding surface protein. Structure 8:67–78
    [Google Scholar]
  6. Deivanayagam C. C., Wann E. R., Chen W., Carson M., Rajashankar K. R., Höök M., Narayana S. V. 2002; A novel variant of the immunoglobulin fold in surface adhesins of Staphylococcus aureus: crystal structure of the fibrinogen-binding MSCRAMM, clumping factor A. EMBO J 21:6660–6672
    [Google Scholar]
  7. Jönsson K., Signäs C., Müller H. P., Lindberg M. 1991; Two different genes encode fibronectin binding proteins in Staphylococcus aureus. The complete nucleotide sequence and characterization of the second gene. Eur J Biochem 202:1041–1048
    [Google Scholar]
  8. Keane F. M., Loughman A., Valtulina V., Brennan M., Speziale P., Foster T. J. 2007; Fibrinogen and elastin bind to the same region within the A domain of fibronectin binding protein A, an MSCRAMM of Staphylococcus aureus . Mol Microbiol 63:711–723
    [Google Scholar]
  9. Kelley L. A., MacCallum R. M., Sternberg M. J. E. 2000; Enhanced genome annotation using structural profiles in the program 3D-pssm. J Mol Biol 299:499–520
    [Google Scholar]
  10. Kemp K. D., Singh K. V., Nallapareddy S. R., Murray B. E. 2007; Relative contributions of Enterococcus faecalis OG1RF sortase-encoding genes,srtA and bps ( srtC), to biofilm formation and a murine model of urinary tract infection. Infect Immun 75:5399–5404
    [Google Scholar]
  11. Li X., Weinstock G. M., Murray B. E. 1995; Generation of auxotrophic mutants of Enterococcus faecalis . J Bacteriol 177:6866–6873
    [Google Scholar]
  12. Lobley A., Whitmore L., Wallace B. A. 2002; dichroweb: an interactive website for the analysis of protein secondary structure from circular dichroism spectra. Bioinformatics 18:211–212
    [Google Scholar]
  13. Malathum K., Murray B. E. 1999; Vancomycin-resistant enterococci: recent advances in genetics, epidemiology and therapeutic options. Drug Resist Updat 2:224–243
    [Google Scholar]
  14. Mazmanian S. K., Ton-That H., Schneewind O. 2001; Sortase-catalysed anchoring of surface proteins to the cell wall of Staphylococcus aureus . Mol Microbiol 40:1049–1057
    [Google Scholar]
  15. McCrea K. W., Hartford O., Davis S., Eidhin D. N., Lina G., Speziale P., Foster T. J., Höök M. 2000; The serine-aspartate repeat (Sdr) protein family in Staphylococcus epidermidis . Microbiology 146:1535–1546
    [Google Scholar]
  16. McDevitt D., Foster T. J. 1995; Variation in the size of the repeat region of the fibrinogen receptor (clumping factor) of Staphylococcus aureus strains. Microbiology 141:937–943
    [Google Scholar]
  17. McDevitt D., Francois P., Vaudaux P., Foster T. J. 1994; Molecular characterization of the clumping factor (fibrinogen receptor) of Staphylococcus aureus . Mol Microbiol 11:237–248
    [Google Scholar]
  18. Murray B. E. 2000; Vancomycin-resistant enterococcal infections. N Engl J Med 342:710–721
    [Google Scholar]
  19. Murray B. E., Weinstock G. M. 1999; Enterococci: new aspects of an old organism. Proc Assoc Am Physicians 111:328–334
    [Google Scholar]
  20. Murray B. E., Singh K. V., Ross R. P., Heath J. D., Dunny G. M., Weinstock G. M. 1993; Generation of restriction map of Enterococcus faecalis OG1 and investigation of growth requirements and regions encoding biosynthetic function. J Bacteriol 175:5216–5223
    [Google Scholar]
  21. Nallapareddy S. R., Murray B. E. 2008; Role played by serum, a biological cue, in the adherence of Enterococcus faecalis to extracellular matrix proteins, collagen, fibrinogen, and fibronectin. J Infect Dis 197:1728–1736
    [Google Scholar]
  22. Nallapareddy S. R., Qin X., Weinstock G. M., Höök M., Murray B. E. 2000; Enterococcus faecalis adhesin, ace, mediates attachment to extracellular matrix proteins collagen type IV and laminin as well as collagen type I. Infect Immun 68:5218–5224
    [Google Scholar]
  23. Nallapareddy S. R., Weinstock G. M., Murray B. E. 2003; Clinical isolates of Enterococcus faecium exhibit strain-specific collagen binding mediated by Acm, a new member of the MSCRAMM family. Mol Microbiol 47:1733–1747
    [Google Scholar]
  24. Nallapareddy S. R., Singh K. V., Sillanpää J., Garsin D. A., Höök M., Erlandsen S. L., Murray B. E. 2006; Endocarditis and biofilm-associated pili of Enterococcus faecalis . J Clin Invest 116:2799–2807
    [Google Scholar]
  25. Navarre W. W., Schneewind O. 1999; Surface proteins of Gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev 63:174–229
    [Google Scholar]
  26. Ni Eidhin D., Perkins S., Francois P., Vaudaux P., Höök M., Foster T. J. 1998; Clumping factor B (ClfB), a new surface-located fibrinogen-binding adhesin of Staphylococcus aureus . Mol Microbiol 30:245–257
    [Google Scholar]
  27. O'Brien L. M., Walsh E. J., Massey R. C., Peacock S. J., Foster T. J. 2002; Staphylococcus aureus clumping factor B (ClfB) promotes adherence to human type I cytokeratin 10: implications for nasal colonization. Cell Microbiol 4:759–770
    [Google Scholar]
  28. Pace C. N., Vajdos F., Fee L., Grimsley G., Gray T. 1995; How to measure and predict the molar absorption coefficient of a protein. Protein Sci 4:2411–2423
    [Google Scholar]
  29. Patti J. M., Jonsson H., Guss B., Switalski L. M., Wiberg K., Lindberg M., Höök M. 1992; Molecular characterization and expression of a gene encoding a Staphylococcus aureus collagen adhesin. J Biol Chem 267:4766–4772
    [Google Scholar]
  30. Paulsen I. T., Banerjei L., Myers G. S., Nelson K. E., Seshadri R., Read T. D., Fouts D. E., Eisen J. A., Gill S. R. other authors 2003; Role of mobile DNA in the evolution of vancomycin-resistant Enterococcus faecalis . Science 299:2071–2074
    [Google Scholar]
  31. Perkins S., Walsh E. J., Deivanayagam C. C., Narayana S. V., Foster T. J., Höök M. 2001; Structural organization of the fibrinogen-binding region of the clumping factor B MSCRAMM of Staphylococcus aureus . J Biol Chem 276:44721–44728
    [Google Scholar]
  32. Ponnuraj K., Bowden G., Davis S., Gurusiddappa S., Moore D., Choe D., Xu Y., Höök M., Narayana S. V. 2003; A “dock, lock, and latch” structural model for a staphylococcal adhesin binding to fibrinogen. Cell 115:217–228
    [Google Scholar]
  33. Qin X., Teng F., Xu Y., Singh K. V., Weinstock G. M., Murray B. E. 1998; Targeted mutagenesis of enterococcal genes. Methods Cell Sci 20:21–33
    [Google Scholar]
  34. Rich R. L., Kreikemeyer B., Owens R. T., LaBrenz S., Narayana S. V., Weinstock G. M., Murray B. E., Höök M. 1999; Ace is a collagen-binding MSCRAMM from Enterococcus faecalis . J Biol Chem 274:26939–26945
    [Google Scholar]
  35. Roche F. M., Downer R., Keane F., Speziale P., Park P. W., Foster T. J. 2004; The N-terminal A domain of fibronectin-binding proteins A and B promotes adhesion of Staphylococcus aureus to elastin. J Biol Chem 279:38433–38440
    [Google Scholar]
  36. Rozdzinski E., Marre R., Susa M., Wirth R., Muscholl-Silberhorn A. 2001; Aggregation substance-mediated adherence of Enterococcus faecalis to immobilized extracellular matrix proteins. Microb Pathog 30:211–220
    [Google Scholar]
  37. Sahm D. F., Kissinger J., Gilmore M. S., Murray P. R., Mulder R., Solliday J., Clarke B. 1989; In vitro susceptibility studies of vancomycin-resistant Enterococcus faecalis . Antimicrob Agents Chemother 33:1588–1591
    [Google Scholar]
  38. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  39. Schneewind O., Model P., Fischetti V. A. 1992; Sorting of protein A to the staphylococcal cell wall. Cell 70:267–281
    [Google Scholar]
  40. Signäs C., Raucci G., Jönsson K., Lindgren P. E., Anantharamaiah G. M., Höök M., Lindberg M. 1989; Nucleotide sequence of the gene for a fibronectin-binding protein from Staphylococcus aureus: use of this peptide sequence in the synthesis of biologically active peptides. Proc Natl Acad Sci U S A 86:699–703
    [Google Scholar]
  41. Sillanpää J., Xu Y., Nallapareddy S. R., Murray B. E., Höök M. 2004; A family of putative MSCRAMMs from Enterococcus faecalis . Microbiology 150:2069–2078
    [Google Scholar]
  42. Sillanpää J., Nallapareddy S. R., Prakash V. P., Qin X., Höök M., Weinstock G. M., Murray B. E. 2008; Identification and phenotypic characterization of a second collagen adhesin, Scm, and genome-based identification and analysis of 13 other predicted MSCRAMMs, including four distinct pilus loci, in Enterococcus faecium . Microbiology 154:3199–3211
    [Google Scholar]
  43. Singh K. V., Qin X., Weinstock G. M., Murray B. E. 1998; Generation and testing of mutants of Enterococcus faecalis in a mouse peritonitis model. J Infect Dis 178:1416–1420
    [Google Scholar]
  44. Singh K. V., Nallapareddy S. R., Murray B. E. 2007; Importance of the ebp (endocarditis- and biofilm-associated pilus) locus in the pathogenesis of Enterococcus faecalis ascending urinary tract infection. J Infect Dis 195:1671–1677
    [Google Scholar]
  45. Styriak I., Lauková A., Fallgren C., Wadström T. 1999; Binding of selected extracellular proteins to enterococci and Streptococcus bovis of animal origin. Curr Microbiol 39:327–335
    [Google Scholar]
  46. Styriak I., Lauková A., Ljungh A. 2002; Lectin-like binding and antibiotic sensitivity of enterococci from wild herbivores. Microbiol Res 157:293–303
    [Google Scholar]
  47. Tomita H., Ike Y. 2004; Tissue-specific adherent Enterococcus faecalis strains that show highly efficient adhesion to human bladder carcinoma T24 cells also adhere to extracellular matrix proteins. Infect Immun 72:5877–5885
    [Google Scholar]
  48. Wann E. R., Gurusiddappa S., Höök M. 2000; The fibronectin-binding MSCRAMM FnbpA of Staphylococcus aureus is a bifunctional protein that also binds to fibrinogen. J Biol Chem 275:13863–13871
    [Google Scholar]
  49. Whitmore L., Wallace B. A. 2004; dichroweb, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Res 32:W668–W673
    [Google Scholar]
  50. Xiao J., Höök M., Weinstock G. M., Murray B. E. 1998; Conditional adherence of Enterococcus faecalis to extracellular matrix proteins. FEMS Immunol Med Microbiol 21:287–295
    [Google Scholar]
  51. Zareba T. W., Pascu C., Hryniewicz W., Wadström T. 1997; Binding of enterococci to extracellular matrix proteins. Adv Exp Med Biol 418:721–723
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.027821-0
Loading
/content/journal/micro/10.1099/mic.0.027821-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed