1887

Abstract

This work is believed to be the first report on the physiological and biochemical characterization of --rhamnosidases in lactic acid bacteria. A total of 216 strains representing 37 species and eight genera of food-grade bacteria were screened for --rhamnosidase activity. The majority of positive bacteria (25 out of 35) were strains, and activity of the strain NCC245 was examined in more detail. The analysis of --rhamnosidase activity under different growth conditions revealed dual regulation of the enzyme activity, involving carbon catabolite repression and induction: the enzyme activity was downregulated by glucose and upregulated by -rhamnose. The expression of the two --rhamnosidase genes and and two predicted permease genes and , identified in a probable operon , was repressed by glucose and induced by -rhamnose, showing regulation at the transcriptional level. The two --rhamnosidase genes were overexpressed and purified from . RhaB1 activity was maximal at 50 °C and at neutral pH and RhaB2 maximal activity was detected at 60 °C and at pH 5, with high residual activity at 70 °C. Both enzymes showed a preference for the -1,6 linkage of -rhamnose to --glucose, hesperidin and rutin being their best substrates, but, surprisingly, no activity was detected towards the -1,2 linkage in naringin under the tested conditions. In conclusion, we identified and characterized the strain NCC245 and its two --rhamnosidase enzymes, which might be applied for improvement of bioavailability of health-beneficial polyphenols, such as hesperidin, in humans.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.027789-0
2009-08-01
2020-11-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/8/2739.html?itemId=/content/journal/micro/10.1099/mic.0.027789-0&mimeType=html&fmt=ahah

References

  1. Bader G., Wray V., Just U., Hiller K. 1998; Enzymatic hydrolysis of the cytotoxic triterpenoid glycoside virgaureasaponin 1. Phytochemistry 49:153–156
    [Google Scholar]
  2. Birgisson H., Fridjonsson O., Bahrani-Mougeot F. K., Hreggvidsson G. O., Kristjansson J. K., Mattiasson B. 2004a; A new thermostable α-l-arabinofuranosidase from a novel thermophilic bacterium. Biotechnol Lett 26:1347–1351
    [Google Scholar]
  3. Birgisson H., Hreggvidsson G. O., Fridjonsson O. H., Mort A., Kristjansson J. K., Mattiasson B. 2004b; Two new thermostable α-l-rhamnosidases from a novel thermophilic bacterium. Enzyme Microb Technol 34:561–571
    [Google Scholar]
  4. Boels I. C., Beerthuyzen M. M., Kosters M. H., Van Kaauwen M. P., Kleerebezem M., de Vos W. M. 2004; Identification and functional characterization of the Lactococcus lactis rfb operon, required for dTDP-rhamnose biosynthesis. J Bacteriol 186:1239–1248
    [Google Scholar]
  5. Bokkenheuser V. D., Shackleton C. H., Winter J. 1987; Hydrolysis of dietary flavonoid glycosides by strains of intestinal Bacteroides from humans. Biochem J 248:953–956
    [Google Scholar]
  6. Cui Z., Maruyama Y., Mikami B., Hashimoto W., Murata K. 2007; Crystal structure of glycoside hydrolase family 78 α-l-rhamnosidase from Bacillus sp. GL1. J Mol Biol 374:384–398
    [Google Scholar]
  7. De Man J. C., Rogosa M., Sharpe E. 1960; A medium for the cultivation of lactobacilli. J Appl Bacteriol 23:130–135
    [Google Scholar]
  8. Deutscher J. 2008; The mechanisms of carbon catabolite repression in bacteria. Curr Opin Microbiol 11:87–93
    [Google Scholar]
  9. Gallegos M. T., Schleif R., Bairoch A., Hofmann K., Ramos J. L. 1997; Arac/XylS family of transcriptional regulators. Microbiol Mol Biol Rev 61:393–410
    [Google Scholar]
  10. Giavasis I., Harvey L. M., McNeil B. 2000; Gellan gum. Crit Rev Biotechnol 20:177–211
    [Google Scholar]
  11. Griffiths L. A., Barrow A. 1972; Metabolism of flavonoid compounds in germ-free rats. Biochem J 130:1161–1162
    [Google Scholar]
  12. Guardia T., Rotelli A. E., Juarez A. O., Pelzer L. E. 2001; Anti-inflammatory properties of plant flavonoids. Effects of rutin, quercetin and hesperidin on adjuvant arthritis in rat. Farmaco 56:683–687
    [Google Scholar]
  13. Hashimoto W., Murata K. 1998; α-l-rhamnosidase of Sphingomonas sp. R1 producing an unusual exopolysaccharide of sphingan. Biosci Biotechnol Biochem 62:1068–1074
    [Google Scholar]
  14. Hashimoto W., Nankai H., Sato N., Kawai S., Murata K. 1999; Characterization of α-l-rhamnosidase of Bacillus sp. GL1 responsible for the complete depolymerization of gellan. Arch Biochem Biophys 368:56–60
    [Google Scholar]
  15. Hashimoto W., Miyake O., Nankai H., Murata K. 2003; Molecular identification of an α-l-rhamnosidase from Bacillus sp strain GL1 as an enzyme involved in complete metabolism of gellan. Arch Biochem Biophys 415:235–244
    [Google Scholar]
  16. Jang I. S., Kim D. H. 1996; Purification and characterization of α-l-rhamnosidase from Bacteroides JY-6, a human intestinal bacterium. Biol Pharm Bull 19:1546–1549
    [Google Scholar]
  17. Kalu D. N. 1991; The ovariectomized rat model of postmenopausal bone loss. Bone Miner 15:175–191
    [Google Scholar]
  18. Kleerebezem M., Boekhorst J., van Kranenburg R., Molenaar D., Kuipers O. P., Leer R., Tarchini R., Peters S. A., Sandbrink H. M. other authors 2003; Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci U S A 100:1990–1995
    [Google Scholar]
  19. Kuipers O. P., Beerthuyzen M. M., Siezen R. J., de Vos W. M. 1993; Characterization of the nisin gene cluster nisABTCIPR of Lactococcus lactis. Requirement of expression of the nisA and nisI genes for development of immunity. Eur J Biochem 216:281–291
    [Google Scholar]
  20. Macdonald I. A., Mader J. A., Bussard R. G. 1983; The role of rutin and quercitrin in stimulating flavonol glycosidase activity by cultured cell-free microbial preparations of human feces and saliva. Mutat Res 122:95–102
    [Google Scholar]
  21. Manzanares P., van den Broeck H. C., De Graaff L. H., Visser J. 2001; Purification and characterization of two different α-l-rhamnosidases, RhaA and RhaB, from Aspergillus aculeatus . Appl Environ Microbiol 67:2230–2234
    [Google Scholar]
  22. Manzanares P., Valles S., Ramon D., Orejas M. 2007; α-l-Rhamnosidases: old and new insights. In Industrial Enzymes: Structure, Function, and Applications pp 117–140 Edited by Polaina J., MacCabe A. P. Dordrecht: Springer;
    [Google Scholar]
  23. Marasco R., Muscariello L., Rigano M., Sacco M. 2002; Mutational analysis of the bglH catabolite-responsive element ( cre) in Lactobacillus plantarum . FEMS Microbiol Lett 208:143–146
    [Google Scholar]
  24. Miake F., Murata K., Kuroiwa A., Kumamoto T., Kuroda S., Terasawa T., Tone H., Watanabe K. 1995; Characterization of Pseudomonas paucimobilis FP2001 which forms flagella depending upon the presence of rhamnose in liquid medium. Microbiol Immunol 39:437–442
    [Google Scholar]
  25. Miake F., Satho T., Takesue H., Yanagida F., Kashige N., Watanabe K. 2000; Purification and characterization of intracellular α-l-rhamnosidase from Pseudomonas paucimobilis FP2001. Arch Microbiol 173:65–70
    [Google Scholar]
  26. Miwa Y., Nakata A., Ogiwara A., Yamamoto M., Fujita Y. 2000; Evaluation and characterization of catabolite-responsive elements ( cre) of Bacillus subtilis . Nucleic Acids Res 28:1206–1210
    [Google Scholar]
  27. Miyake Y., Yamamoto K., Tsujihara N., Osawa T. 1998; Protective effects of lemon flavonoids on oxidative stress in diabetic rats. Lipids 33:689–695
    [Google Scholar]
  28. Miyata T., Kashige N., Satho T., Yamaguchi T., Aso Y., Miake F. 2005; Cloning, sequence analysis, and expression of the gene encoding Sphingomonas paucimobilis FP2001 α-l-rhamnosidase. Curr Microbiol 51:105–109
    [Google Scholar]
  29. Muscariello L., Marasco R., De Felice M., Sacco M. 2001; The functional ccpA gene is required for carbon catabolite repression in Lactobacillus plantarum . Appl Environ Microbiol 67:2903–2907
    [Google Scholar]
  30. Nielsen I. L., Chee W. S., Poulsen L., Offord-Cavin E., Rasmussen S. E., Frederiksen H., Enslen M., Barron D., Horcajada M. N., Williamson G. 2006; Bioavailability is improved by enzymatic modification of the citrus flavonoid hesperidin in humans: a randomized, double-blind, crossover trial. J Nutr 136:404–408
    [Google Scholar]
  31. Ohtsuki K., Abe A., Mitsuzuwi H., Kondo M., Uemura K., Iwasaki Y., Kondo Y. 2002; Effects of long-term administration of hesperidin and glucosyl hesperidin to spontaneously hypertensive rats. J Nutr Sci Vitaminol (Tokyo 48:420–422
    [Google Scholar]
  32. Park Y. B., Do K. M., Bok S. H., Lee M. K., Jeong T. S., Choi M. S. 2001; Interactive effect of hesperidin and vitamin E supplements on cholesterol metabolism in high cholesterol-fed rats. Int J Vitam Nutr Res 71:36–44
    [Google Scholar]
  33. Park S., Kim J., Kim D. 2005; Purification and characterization of quercitrin-hydrolyzing α-l-rhamnosidase from Fusobacterium K-60, a human intestinal bacterium. J Microbiol Biotechnol 15:519–524
    [Google Scholar]
  34. Peterson D. A., McNulty N. P., Guruge J. L., Gordon J. I. 2007; IgA response to symbiotic bacteria as a mediator of gut homeostasis. Cell Host Microbe 2:328–339
    [Google Scholar]
  35. Pham P. L., Dupont I., Roy D., Lapointe G., Cerning J. 2000; Production of exopolysaccharide by Lactobacillus rhamnosus R and analysis of its enzymatic degradation during prolonged fermentation. Appl Environ Microbiol 66:2302–2310
    [Google Scholar]
  36. Puri M., Marwaha S., Kothari R. M., Kennedy J. F. 1996; Biochemical basis of bitterness in citrus fruit juices and biotech approaches for debittering. Crit Rev Biotechnol 16:145–155
    [Google Scholar]
  37. Sambrook J., Russell D. W. 2001 Molecular Cloning: a Laboratory Manual , 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  38. Steinbacher S., Baxa U., Miller S., Weintraub A., Seckler R., Huber R. 1996; Crystal structure of phage P22 tailspike protein complexed with Salmonella sp. O-antigen receptors. Proc Natl Acad Sci U S A 93:10584–10588
    [Google Scholar]
  39. Tanaka T., Kohno H., Murakami M., Shimada R., Kagami S., Sumida T., Azuma Y., Ogawa H. 2000; Suppression of azoxymethane-induced colon carcinogenesis in male F344 rats by mandarin juices rich in beta-cryptoxanthin and hesperidin. Int J Cancer 88:146–150
    [Google Scholar]
  40. Turner A. J., Isaac R. E., Coates D. 2001; The neprilysin (NEP) family of zinc metalloendopeptidases: genomics and function. Bioessays 23:261–269
    [Google Scholar]
  41. Warner J. B., Lolkema J. S. 2003; CcpA-dependent carbon catabolite repression in bacteria. Microbiol Mol Biol Rev 67:475–490
    [Google Scholar]
  42. Wickstrum J. R., Santangelo T. J., Egan S. M. 2005; Cyclic AMP receptor protein and RhaR synergistically activate transcription from the l-rhamnose-responsive rhaSR promoter in Escherichia coli . J Bacteriol 187:6708–6718
    [Google Scholar]
  43. Williams P. J., Strauss C. R., Wilson B., Massy-Westropp R. A. 1982; Novel monoterpene disaccharide glycosides of Vitis vinifera grapes and wines. Phytochemistry 21:2013–2020
    [Google Scholar]
  44. Wood T. M. B. K. M. 1988; Methods for measuring cellulase activity. In Methods in Enzymology pp 91–92 Edited by Wood A. K. S. T. San Diego: Academic Press;
    [Google Scholar]
  45. Zverlov V. V., Hertel C., Bronnenmeier K., Hroch A., Kellermann J., Schwarz W. H. 2000; The thermostable α-l-rhamnosidase RamA of Clostridium stercorarium: biochemical characterization and primary structure of a bacterial α-l-rhamnoside hydrolase, a new type of inverting glycoside hydrolase. Mol Microbiol 35:173–179
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.027789-0
Loading
/content/journal/micro/10.1099/mic.0.027789-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error