1887

Abstract

This work is believed to be the first report on the physiological and biochemical characterization of --rhamnosidases in lactic acid bacteria. A total of 216 strains representing 37 species and eight genera of food-grade bacteria were screened for --rhamnosidase activity. The majority of positive bacteria (25 out of 35) were strains, and activity of the strain NCC245 was examined in more detail. The analysis of --rhamnosidase activity under different growth conditions revealed dual regulation of the enzyme activity, involving carbon catabolite repression and induction: the enzyme activity was downregulated by glucose and upregulated by -rhamnose. The expression of the two --rhamnosidase genes and and two predicted permease genes and , identified in a probable operon , was repressed by glucose and induced by -rhamnose, showing regulation at the transcriptional level. The two --rhamnosidase genes were overexpressed and purified from . RhaB1 activity was maximal at 50 °C and at neutral pH and RhaB2 maximal activity was detected at 60 °C and at pH 5, with high residual activity at 70 °C. Both enzymes showed a preference for the -1,6 linkage of -rhamnose to --glucose, hesperidin and rutin being their best substrates, but, surprisingly, no activity was detected towards the -1,2 linkage in naringin under the tested conditions. In conclusion, we identified and characterized the strain NCC245 and its two --rhamnosidase enzymes, which might be applied for improvement of bioavailability of health-beneficial polyphenols, such as hesperidin, in humans.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.027789-0
2009-08-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/8/2739.html?itemId=/content/journal/micro/10.1099/mic.0.027789-0&mimeType=html&fmt=ahah

References

  1. Bader, G., Wray, V., Just, U. & Hiller, K. ( 1998; ). Enzymatic hydrolysis of the cytotoxic triterpenoid glycoside virgaureasaponin 1. Phytochemistry 49, 153–156.[CrossRef]
    [Google Scholar]
  2. Birgisson, H., Fridjonsson, O., Bahrani-Mougeot, F. K., Hreggvidsson, G. O., Kristjansson, J. K. & Mattiasson, B. ( 2004a; ). A new thermostable α-l-arabinofuranosidase from a novel thermophilic bacterium. Biotechnol Lett 26, 1347–1351.[CrossRef]
    [Google Scholar]
  3. Birgisson, H., Hreggvidsson, G. O., Fridjonsson, O. H., Mort, A., Kristjansson, J. K. & Mattiasson, B. ( 2004b; ). Two new thermostable α-l-rhamnosidases from a novel thermophilic bacterium. Enzyme Microb Technol 34, 561–571.[CrossRef]
    [Google Scholar]
  4. Boels, I. C., Beerthuyzen, M. M., Kosters, M. H., Van Kaauwen, M. P., Kleerebezem, M. & de Vos, W. M. ( 2004; ). Identification and functional characterization of the Lactococcus lactis rfb operon, required for dTDP-rhamnose biosynthesis. J Bacteriol 186, 1239–1248.[CrossRef]
    [Google Scholar]
  5. Bokkenheuser, V. D., Shackleton, C. H. & Winter, J. ( 1987; ). Hydrolysis of dietary flavonoid glycosides by strains of intestinal Bacteroides from humans. Biochem J 248, 953–956.
    [Google Scholar]
  6. Cui, Z., Maruyama, Y., Mikami, B., Hashimoto, W. & Murata, K. ( 2007; ). Crystal structure of glycoside hydrolase family 78 α-l-rhamnosidase from Bacillus sp. GL1. J Mol Biol 374, 384–398.[CrossRef]
    [Google Scholar]
  7. De Man, J. C., Rogosa, M. & Sharpe, E. ( 1960; ). A medium for the cultivation of lactobacilli. J Appl Bacteriol 23, 130–135.[CrossRef]
    [Google Scholar]
  8. Deutscher, J. ( 2008; ). The mechanisms of carbon catabolite repression in bacteria. Curr Opin Microbiol 11, 87–93.[CrossRef]
    [Google Scholar]
  9. Gallegos, M. T., Schleif, R., Bairoch, A., Hofmann, K. & Ramos, J. L. ( 1997; ). Arac/XylS family of transcriptional regulators. Microbiol Mol Biol Rev 61, 393–410.
    [Google Scholar]
  10. Giavasis, I., Harvey, L. M. & McNeil, B. ( 2000; ). Gellan gum. Crit Rev Biotechnol 20, 177–211.[CrossRef]
    [Google Scholar]
  11. Griffiths, L. A. & Barrow, A. ( 1972; ). Metabolism of flavonoid compounds in germ-free rats. Biochem J 130, 1161–1162.
    [Google Scholar]
  12. Guardia, T., Rotelli, A. E., Juarez, A. O. & Pelzer, L. E. ( 2001; ). Anti-inflammatory properties of plant flavonoids. Effects of rutin, quercetin and hesperidin on adjuvant arthritis in rat. Farmaco 56, 683–687.[CrossRef]
    [Google Scholar]
  13. Hashimoto, W. & Murata, K. ( 1998; ). α-l-rhamnosidase of Sphingomonas sp. R1 producing an unusual exopolysaccharide of sphingan. Biosci Biotechnol Biochem 62, 1068–1074.[CrossRef]
    [Google Scholar]
  14. Hashimoto, W., Nankai, H., Sato, N., Kawai, S. & Murata, K. ( 1999; ). Characterization of α-l-rhamnosidase of Bacillus sp. GL1 responsible for the complete depolymerization of gellan. Arch Biochem Biophys 368, 56–60.[CrossRef]
    [Google Scholar]
  15. Hashimoto, W., Miyake, O., Nankai, H. & Murata, K. ( 2003; ). Molecular identification of an α-l-rhamnosidase from Bacillus sp strain GL1 as an enzyme involved in complete metabolism of gellan. Arch Biochem Biophys 415, 235–244.[CrossRef]
    [Google Scholar]
  16. Jang, I. S. & Kim, D. H. ( 1996; ). Purification and characterization of α-l-rhamnosidase from Bacteroides JY-6, a human intestinal bacterium. Biol Pharm Bull 19, 1546–1549.[CrossRef]
    [Google Scholar]
  17. Kalu, D. N. ( 1991; ). The ovariectomized rat model of postmenopausal bone loss. Bone Miner 15, 175–191.[CrossRef]
    [Google Scholar]
  18. Kleerebezem, M., Boekhorst, J., van Kranenburg, R., Molenaar, D., Kuipers, O. P., Leer, R., Tarchini, R., Peters, S. A., Sandbrink, H. M. & other authors ( 2003; ). Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci U S A 100, 1990–1995.[CrossRef]
    [Google Scholar]
  19. Kuipers, O. P., Beerthuyzen, M. M., Siezen, R. J. & de Vos, W. M. ( 1993; ). Characterization of the nisin gene cluster nisABTCIPR of Lactococcus lactis. Requirement of expression of the nisA and nisI genes for development of immunity. Eur J Biochem 216, 281–291.[CrossRef]
    [Google Scholar]
  20. Macdonald, I. A., Mader, J. A. & Bussard, R. G. ( 1983; ). The role of rutin and quercitrin in stimulating flavonol glycosidase activity by cultured cell-free microbial preparations of human feces and saliva. Mutat Res 122, 95–102.[CrossRef]
    [Google Scholar]
  21. Manzanares, P., van den Broeck, H. C., De Graaff, L. H. & Visser, J. ( 2001; ). Purification and characterization of two different α-l-rhamnosidases, RhaA and RhaB, from Aspergillus aculeatus. Appl Environ Microbiol 67, 2230–2234.[CrossRef]
    [Google Scholar]
  22. Manzanares, P., Valles, S., Ramon, D. & Orejas, M. ( 2007; ). α-l-Rhamnosidases: old and new insights. In Industrial Enzymes: Structure, Function, and Applications, pp. 117–140. Edited by J. Polaina & A. P. MacCabe. Dordrecht: Springer.
  23. Marasco, R., Muscariello, L., Rigano, M. & Sacco, M. ( 2002; ). Mutational analysis of the bglH catabolite-responsive element (cre) in Lactobacillus plantarum. FEMS Microbiol Lett 208, 143–146.[CrossRef]
    [Google Scholar]
  24. Miake, F., Murata, K., Kuroiwa, A., Kumamoto, T., Kuroda, S., Terasawa, T., Tone, H. & Watanabe, K. ( 1995; ). Characterization of Pseudomonas paucimobilis FP2001 which forms flagella depending upon the presence of rhamnose in liquid medium. Microbiol Immunol 39, 437–442.[CrossRef]
    [Google Scholar]
  25. Miake, F., Satho, T., Takesue, H., Yanagida, F., Kashige, N. & Watanabe, K. ( 2000; ). Purification and characterization of intracellular α-l-rhamnosidase from Pseudomonas paucimobilis FP2001. Arch Microbiol 173, 65–70.[CrossRef]
    [Google Scholar]
  26. Miwa, Y., Nakata, A., Ogiwara, A., Yamamoto, M. & Fujita, Y. ( 2000; ). Evaluation and characterization of catabolite-responsive elements (cre) of Bacillus subtilis. Nucleic Acids Res 28, 1206–1210.[CrossRef]
    [Google Scholar]
  27. Miyake, Y., Yamamoto, K., Tsujihara, N. & Osawa, T. ( 1998; ). Protective effects of lemon flavonoids on oxidative stress in diabetic rats. Lipids 33, 689–695.[CrossRef]
    [Google Scholar]
  28. Miyata, T., Kashige, N., Satho, T., Yamaguchi, T., Aso, Y. & Miake, F. ( 2005; ). Cloning, sequence analysis, and expression of the gene encoding Sphingomonas paucimobilis FP2001 α-l-rhamnosidase. Curr Microbiol 51, 105–109.[CrossRef]
    [Google Scholar]
  29. Muscariello, L., Marasco, R., De Felice, M. & Sacco, M. ( 2001; ). The functional ccpA gene is required for carbon catabolite repression in Lactobacillus plantarum. Appl Environ Microbiol 67, 2903–2907.[CrossRef]
    [Google Scholar]
  30. Nielsen, I. L., Chee, W. S., Poulsen, L., Offord-Cavin, E., Rasmussen, S. E., Frederiksen, H., Enslen, M., Barron, D., Horcajada, M. N. & Williamson, G. ( 2006; ). Bioavailability is improved by enzymatic modification of the citrus flavonoid hesperidin in humans: a randomized, double-blind, crossover trial. J Nutr 136, 404–408.
    [Google Scholar]
  31. Ohtsuki, K., Abe, A., Mitsuzuwi, H., Kondo, M., Uemura, K., Iwasaki, Y. & Kondo, Y. ( 2002; ). Effects of long-term administration of hesperidin and glucosyl hesperidin to spontaneously hypertensive rats. J Nutr Sci Vitaminol (Tokyo) 48, 420–422.[CrossRef]
    [Google Scholar]
  32. Park, Y. B., Do, K. M., Bok, S. H., Lee, M. K., Jeong, T. S. & Choi, M. S. ( 2001; ). Interactive effect of hesperidin and vitamin E supplements on cholesterol metabolism in high cholesterol-fed rats. Int J Vitam Nutr Res 71, 36–44.[CrossRef]
    [Google Scholar]
  33. Park, S., Kim, J. & Kim, D. ( 2005; ). Purification and characterization of quercitrin-hydrolyzing α-l-rhamnosidase from Fusobacterium K-60, a human intestinal bacterium. J Microbiol Biotechnol 15, 519–524.
    [Google Scholar]
  34. Peterson, D. A., McNulty, N. P., Guruge, J. L. & Gordon, J. I. ( 2007; ). IgA response to symbiotic bacteria as a mediator of gut homeostasis. Cell Host Microbe 2, 328–339.[CrossRef]
    [Google Scholar]
  35. Pham, P. L., Dupont, I., Roy, D., Lapointe, G. & Cerning, J. ( 2000; ). Production of exopolysaccharide by Lactobacillus rhamnosus R and analysis of its enzymatic degradation during prolonged fermentation. Appl Environ Microbiol 66, 2302–2310.[CrossRef]
    [Google Scholar]
  36. Puri, M., Marwaha, S., Kothari, R. M. & Kennedy, J. F. ( 1996; ). Biochemical basis of bitterness in citrus fruit juices and biotech approaches for debittering. Crit Rev Biotechnol 16, 145–155.[CrossRef]
    [Google Scholar]
  37. Sambrook, J. & Russell, D. W. ( 2001; ). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  38. Steinbacher, S., Baxa, U., Miller, S., Weintraub, A., Seckler, R. & Huber, R. ( 1996; ). Crystal structure of phage P22 tailspike protein complexed with Salmonella sp. O-antigen receptors. Proc Natl Acad Sci U S A 93, 10584–10588.[CrossRef]
    [Google Scholar]
  39. Tanaka, T., Kohno, H., Murakami, M., Shimada, R., Kagami, S., Sumida, T., Azuma, Y. & Ogawa, H. ( 2000; ). Suppression of azoxymethane-induced colon carcinogenesis in male F344 rats by mandarin juices rich in beta-cryptoxanthin and hesperidin. Int J Cancer 88, 146–150.[CrossRef]
    [Google Scholar]
  40. Turner, A. J., Isaac, R. E. & Coates, D. ( 2001; ). The neprilysin (NEP) family of zinc metalloendopeptidases: genomics and function. Bioessays 23, 261–269.[CrossRef]
    [Google Scholar]
  41. Warner, J. B. & Lolkema, J. S. ( 2003; ). CcpA-dependent carbon catabolite repression in bacteria. Microbiol Mol Biol Rev 67, 475–490.[CrossRef]
    [Google Scholar]
  42. Wickstrum, J. R., Santangelo, T. J. & Egan, S. M. ( 2005; ). Cyclic AMP receptor protein and RhaR synergistically activate transcription from the l-rhamnose-responsive rhaSR promoter in Escherichia coli. J Bacteriol 187, 6708–6718.[CrossRef]
    [Google Scholar]
  43. Williams, P. J., Strauss, C. R., Wilson, B. & Massy-Westropp, R. A. ( 1982; ). Novel monoterpene disaccharide glycosides of Vitis vinifera grapes and wines. Phytochemistry 21, 2013–2020.[CrossRef]
    [Google Scholar]
  44. Wood, T. M. B. K. M. ( 1988; ). Methods for measuring cellulase activity. In Methods in Enzymology, pp. 91–92. Edited by A. K. S. T. Wood. San Diego: Academic Press.
  45. Zverlov, V. V., Hertel, C., Bronnenmeier, K., Hroch, A., Kellermann, J. & Schwarz, W. H. ( 2000; ). The thermostable α-l-rhamnosidase RamA of Clostridium stercorarium: biochemical characterization and primary structure of a bacterial α-l-rhamnoside hydrolase, a new type of inverting glycoside hydrolase. Mol Microbiol 35, 173–179.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.027789-0
Loading
/content/journal/micro/10.1099/mic.0.027789-0
Loading

Data & Media loading...

Supplements

Structures of the flavonoid glycosides rutin, hesperidin and naringin [ PDF] (129 kb) Sequence alignment of bacterial α-L-rhamnosidases in GH family 78 [ PDF] (50 kb)

PDF

Structures of the flavonoid glycosides rutin, hesperidin and naringin [ PDF] (129 kb) Sequence alignment of bacterial α-L-rhamnosidases in GH family 78 [ PDF] (50 kb)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error