1887

Abstract

The Hrp type III secretion system (TTSS) is essential for the pathogenicity of on host plants. Hrp TTSS is a specialized secretion system that injects virulence proteins, the so-called type III effector proteins, into plant cells. In , the expression of Hrp TTSS-related genes is regulated by an AraC-type transcriptional activator, HrpB. We have identified 30 -regulated (-dependent epression) genes and three well-known -regulated genes, , and , as candidate effector genes in strain RS1000. In this study, we newly cloned 11 additional candidate effector genes that share homology with known genes from RS1000. Using a Cya reporter system, we investigated the translocation of these 44 gene products into plant cells via the Hrp TTSS and identified 34 effector proteins. These include three effector families composed of more than four members, namely the Hpx4, Hpx30 and GALA families. The Hpx30 family effectors are 2200–2500 aa in size and appear to be the largest class of effector proteins among animal- and plant-pathogenic bacteria. Members of this family contain 12–18 tandem repeats of a novel 42 aa motif, designated SKWP repeats.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.027763-0
2009-07-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/7/2235.html?itemId=/content/journal/micro/10.1099/mic.0.027763-0&mimeType=html&fmt=ahah

References

  1. Alfano, J. R. & Collmer, A. ( 1997; ). The type III (Hrp) secretion pathway of plant pathogenic bacteria: trafficking harpins, Avr proteins and death. J Bacteriol 179, 5655–5662.
    [Google Scholar]
  2. Alfano, J. R. & Collmer, A. ( 2004; ). Type III secretion system effector proteins: double agents in bacterial disease and plant defense. Annu Rev Phytopathol 42, 385–414.[CrossRef]
    [Google Scholar]
  3. Angot, A., Peeters, N., Lechner, E., Vailleau, F., Baud, C., Gentzbittel, L., Sartorel, E., Genschik, P., Boucher, C. & Genin, S. ( 2006; ). Ralstonia solanacearum requires F-box-like domain-containing type III effectors to promote disease on several host plants. Proc Natl Acad Sci U S A 103, 14620–14625.[CrossRef]
    [Google Scholar]
  4. Arlat, M., Van Gijsegem, F., Huet, J. C., Pernollet, J. C. & Boucher, C. A. ( 1994; ). PopA1, a protein which induces a hypersensitivity-like response on specific Petunia genotypes, is secreted via the Hrp pathway of Pseudomonas solanacearum. EMBO J 13, 543–553.
    [Google Scholar]
  5. Bai, C., Sen, P., Hofman, K., Ma, L., Goeble, M., Harper, J. W. & Elledge, S. J. ( 1996; ). SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell 86, 263–274.[CrossRef]
    [Google Scholar]
  6. Boucher, C. A., Barberis, P. A., Trigalet, A. P. & Demery, D. ( 1985; ). Transposon mutagenesis of Pseudomonas solanacearum: isolation of Tn5-induced avirulent mutants. Microbiology 131, 2449–2457.[CrossRef]
    [Google Scholar]
  7. Boucher, C. A., Van Gijsegem, F., Barberies, P. A., Arlat, M. & Zischek, C. ( 1987; ). Pseudomanas solanacearum genes controlling both pathogenicity on tomato and hypersensitivity on tobacco are clustered. J Bacteriol 169, 5626–5633.
    [Google Scholar]
  8. Casper-Lindley, C., Dahlbeck, D., Clark, E. T. & Staskawicz, B. J. ( 2002; ). Direct biochemical evidence for type III secretion-dependent translocation of the AvrBs2 effector protein into plant cells. Proc Natl Acad Sci U S A 99, 8336–8341.[CrossRef]
    [Google Scholar]
  9. Chang, J. H., Urbach, J. M., Law, T. F., Arnold, L. W., Hu, A., Gombar, S., Grant, S. R., Ausubel, F. M. & Dangl, J. L. ( 2005; ). A high-throughput, near saturating screen for type III effector genes from Pseudomonas syringae. Proc Natl Acad Sci U S A 102, 2549–2554.[CrossRef]
    [Google Scholar]
  10. Cornelis, G. R. & Van Gijsegem, F. ( 2000; ). Assembly and function of type III secretory systems. Annu Rev Microbiol 54, 735–774.[CrossRef]
    [Google Scholar]
  11. Cunnac, S., Occhialini, A., Barberis, P., Boucher, C. & Gennin, S. ( 2004; ). Inventory and functional analysis of the large Hrp regulon in Ralstonia solanacearum: identification of novel effector proteins translocated to plant host cells through the type III secretion system. Mol Microbiol 53, 115–128.[CrossRef]
    [Google Scholar]
  12. Ferreira, A. O., Myers, C. R., Gordon, J. S., Martin, G. B., Vencato, M., Collmer, A., Wehling, M. D., Alfano, J. R., Moreno-Hagelsieb, G. & other authors ( 2006; ). Whole-genome expression profiling defines the HrpL regulon of Pseudomonas syringae pv. tomato DC3000, allows de novo reconstruction of the Hrp cis element, and identifies novel co-regulated genes. Mol Plant Microbe Interact 19, 1167–1179.[CrossRef]
    [Google Scholar]
  13. Fouts, D. E., Abramovitch, R. B., Alfano, J. R., Baldo, A. M., Buell, C. R., Cartinhour, S., Chatterjee, A. K., D'Ascenzo, M., Gwinn, M. L. & other authors ( 2002; ). Genomewide identification of Pseudomonas syringae pv. tomato DC3000 promoters controlled by the HrpL alternative sigma factor. Proc Natl Acad Sci U S A 99, 2275–2280.[CrossRef]
    [Google Scholar]
  14. Galán, J. E. & Collmer, A. ( 1999; ). Type III secretion machines: bacterial devices for protein delivery into host cells. Science 284, 1322–1328.[CrossRef]
    [Google Scholar]
  15. Galán, J. E. & Wolf-Watz, H. ( 2006; ). Protein delivery into eukaryotic cells by type III secretion machines. Nature 444, 567–573.[CrossRef]
    [Google Scholar]
  16. Ge, X., Li, G.-J., Wang, S.-B., Zhu, H., Zhu, T., Wang, X. & Xia, Y. ( 2007; ). AtNUDT7, a negative regulator of basal immunity in Arabidopsis, modulates two distinct defense response pathways and is involved in maintaining redox homeostasis. Plant Physiol 145, 204–215.[CrossRef]
    [Google Scholar]
  17. Genin, S., Gough, C. L., Zischek, C. & Boucher, C. A. ( 1992; ). Evidence that the hrpB gene encodes a positive regulator of pathogenicity genes from Pseudomonas solanacearum. Mol Microbiol 6, 3065–3076.[CrossRef]
    [Google Scholar]
  18. Gophna, U., Ron, E. Z. & Graur, D. ( 2003; ). Bacterial type III secretion systems are ancient and evolved by multiple horizontal-transfer events. Gene 312, 151–163.[CrossRef]
    [Google Scholar]
  19. Guéneron, M., Timmers, A. C. J., Boucher, C. A. & Arlat, M. ( 2000; ). Two novel proteins, PopB, which has functional nuclear localization signals, and PopC, which has a large leucine-rich repeat domain, are secreted through the Hrp-secretion apparatus of Ralstonia solanacearum. Mol Microbiol 36, 261–277.[CrossRef]
    [Google Scholar]
  20. Guttman, D. S., Vinatzer, B. A., Sarkar, S. F., Ranall, M. V., Kettler, G. & Greenberg, J. T. ( 2002; ). A functional screen for the type III (Hrp) secretome of the plant pathogen Pseudomonas syringae. Science 295, 1722–1726.[CrossRef]
    [Google Scholar]
  21. Hayward, A. C. ( 1991; ). Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annu Rev Phytopathol 29, 65–87.[CrossRef]
    [Google Scholar]
  22. He, S. Y., Nomura, K. & Whittam, T. S. ( 2004; ). Type III protein secretion mechanism in mammalian and plant pathogens. Biochim Biophys Acta 1694, 181–206.[CrossRef]
    [Google Scholar]
  23. Jin, Q. & He, S. Y. ( 2001; ). Role of the Hrp pilus in type III protein secretion in Pseudomonas syringae. Science 294, 2556–2558.[CrossRef]
    [Google Scholar]
  24. Jones, J. D. G. & Dangle, J. L. ( 2006; ). The plant immune system. Nature 444, 323–329.[CrossRef]
    [Google Scholar]
  25. Kajava, A. V., Anisimova, M. & Peeters, N. ( 2008; ). Origin and evolution of GALA-LRR, a new member of the CC–LRR subfamily: from plants to bacteria? PLoS ONE 3, e1694 [CrossRef]
    [Google Scholar]
  26. Kay, S., Hahn, S., Marois, E., Hause, G. & Bonas, U. ( 2007; ). A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science 318, 648–651.[CrossRef]
    [Google Scholar]
  27. Li, X., Lin, H., Zhang, W., Zou, Y., Zhang, J., Tang, X. & Zhou, J.-M. ( 2005; ). Flagellin induces innate immunity in nonhost interactions that is suppressed by Pseudomonas syringae effectors. Proc Natl Acad Sci U S A 102, 12990–12995.[CrossRef]
    [Google Scholar]
  28. Mudgett, M. B. ( 2005; ). New insights to the function of phytopathogenic bacterial type III effectors in plants. Annu Rev Plant Biol 56, 509–531.[CrossRef]
    [Google Scholar]
  29. Mukaihara, T., Tamura, N., Murata, Y. & Iwabuchi, M. ( 2004; ). Genetic screening of Hrp type III-related pathogenicity genes controlled by the HrpB transcriptional activator in Ralstonia solanacearum. Mol Microbiol 54, 863–875.[CrossRef]
    [Google Scholar]
  30. Munkvold, K. R., Martin, M. E., Bronstein, P. A. & Collmer, A. ( 2008; ). A survey of the Pseudomonas syringae pv. tomato DC3000 type III secretion system effector repertoire reveals several effectors that are deleterious when expressed in Saccharomyces cerevisiae. Mol Plant Microbe Interact 21, 490–502.[CrossRef]
    [Google Scholar]
  31. Murata, Y., Tamura, N. & Mukaihara, T. ( 2006; ). Mutations in the lrpE gene of Ralstonia solanacearum affects Hrp pili production and virulence. Mol Plant Microbe Interact 19, 884–895.[CrossRef]
    [Google Scholar]
  32. Noël, L., Thieme, F., Nennstiel, D. & Bonas, U. ( 2001; ). cDNA-AFLP analysis unravels a genome-wide hrpG-regulon in the plant pathogen Xanthomonas campestris pv. vesicatoria. Mol Microbiol 41, 1271–1281.[CrossRef]
    [Google Scholar]
  33. Nomura, K., Melotto, M. & He, S. Y. ( 2005; ). Suppression of host defense in compatible plant–Pseudomonas syringae interactions. Curr Opin Plant Biol 8, 361–368.[CrossRef]
    [Google Scholar]
  34. Occhialini, A., Cunnac, S., Reymond, N., Genin, S. & Boucher, C. ( 2005; ). Genome-wide analysis of gene expression in Ralstonia solanacearum reveals that the hrpB gene acts as a regulatory switch controlling multiple virulence pathways. Mol Plant Microbe Interact 18, 938–949.[CrossRef]
    [Google Scholar]
  35. Petnicki-Ocwieja, T., Schneider, D. J., Tam, V. C., Chancey, S. T., Shan, L. T., Jamir, T., Schecter, L. M., Janes, M. D., Buell, C. R. & other authors ( 2002; ). Genomewide identification of proteins secreted by the Hrp type III protein secretion system of Pseudomonas syringae pv. tomato DC3000. Proc Natl Acad Sci U S A 99, 7652–7657.[CrossRef]
    [Google Scholar]
  36. Roden, J. A., Belt, B., Ross, J. B., Tachibana, T., Vargas, J. & Mudgett, M. B. ( 2004; ). A genetic screen to isolate type III effectors translocated into pepper cells during Xanthomonas infection. Proc Natl Acad Sci U S A 101, 16624–16629.[CrossRef]
    [Google Scholar]
  37. Rohde, J. R., Breitkreutz, A., Chenal, A., Sansonetti, P. J. & Parsot, C. ( 2007; ). Type III secretion effectors of the IpaH family are E3 ubiquitin ligases. Cell Host Microbe 1, 77–83.[CrossRef]
    [Google Scholar]
  38. Roine, E., Wei, W. S., Yuan, J., Nurmiaho-Lassila, E. L., Kalkkinen, N., Romantschuk, M. & He, S. Y. ( 1997; ). Hrp pilus: a hrp-dependent bacterial surface appendage produced by Pseudomonas syringae pv. tomato DC3000. Proc Natl Acad Sci U S A 94, 3459–3464.[CrossRef]
    [Google Scholar]
  39. Salanoubat, M., Genin, S., Artiguenave, F., Gouzy, J., Mangenot, S., Arlat, M., Billault, A., Brottier, P., Camus, J. C. & other authors ( 2002; ). Genome sequence of the plant pathogen Ralstonia solanacearum. Nature 415, 497–502.[CrossRef]
    [Google Scholar]
  40. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  41. Schechter, L. M., Roberts, K. A., Jamir, Y., Alfano, J. R. & Collmer, A. ( 2004; ). Pseudomonas syringae type III secretion system targeting signals and novel effectors studied with a Cya translocation reporter. J Bacteriol 186, 543–555.[CrossRef]
    [Google Scholar]
  42. Schechter, L. M., Vencato, M., Jordan, K. L., Schneider, S. E., Schneider, D. J. & Collmer, A. ( 2006; ). Multiple approaches to a complete inventory of Pseudomonas syringae pv. tomato DC3000 type III secretion system effector proteins. Mol Plant Microbe Interact 19, 1180–1192.[CrossRef]
    [Google Scholar]
  43. Schell, M. A. ( 2000; ). Control of virulence and pathogenicity genes of Ralstonia solanacearum by an elaborate sensory network. Annu Rev Phytopathol 38, 263–292.[CrossRef]
    [Google Scholar]
  44. Simon, R., Priefer, U. & Pühler, A. ( 1983; ). A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Biotechnology (N Y) 1, 784–791.[CrossRef]
    [Google Scholar]
  45. Sory, M. P. & Cornelis, G. R. ( 1994; ). Translocation of a hybrid YopE-adenylate cyclase from Yersinia enterocolitica into HeLa cells. Mol Microbiol 14, 583–594.[CrossRef]
    [Google Scholar]
  46. Tamura, N., Murata, Y. & Mukaihara, T. ( 2005; ). Isolation of Ralstonia solanacearum hrpB constitutive mutants and secretion analysis of hrpB-regulated gene products that share homology with known type III effectors and enzymes. Microbiology 151, 2873–2884.[CrossRef]
    [Google Scholar]
  47. Tobe, T., Beatson, S. A., Taniguchi, H., Abe, H., Bailey, C. M., Fivian, A., Younis, R., Matthews, S., Marches, O. & other authors ( 2006; ). An extensive repertoire of type III effectors in Escherichia coli O157 and the role of lambdoid phages in their dissemination. Proc Natl Acad Sci U S A 103, 14941–14946.[CrossRef]
    [Google Scholar]
  48. Van Gijsegem, F., Gough, C., Zischek, C., Niqueux, E., Arlat, M., Genin, S., Barberis, P., German, S., Castello, P. & Boucher, C. ( 1995; ). The hrp locus of Pseudomonas solanacearum that controls the production of a type III secretion system, encodes eight proteins related to components of the bacterial flagellar biogenesis complex. Mol Microbiol 15, 1095–1114.[CrossRef]
    [Google Scholar]
  49. Van Gijsegem, F., Vasse, J., Camus, J. C., Marenda, M. & Boucher, C. ( 2000; ). Ralstonia solanacearum produces Hrp-dependent pili that are required for PopA secretion but not for attachment of bacteria to plant cells. Mol Microbiol 36, 249–260.[CrossRef]
    [Google Scholar]
  50. Weber, E., Ojanen-Reuhs, T., Huguet, E., Hause, G., Romantschuk, M., Korhonen, T. K., Bonas, U. & Koebnik, R. ( 2005; ). The type III-dependent Hrp pilus is required for productive interaction of Xanthomonas campestris pv. vesicatoria with pepper host plants. J Bacteriol 187, 2458–2468.[CrossRef]
    [Google Scholar]
  51. Wei, C.-F., Kvitko, B. H., Shimizu, R., Crabill, E., Alfano, J. R., Lin, N. C., Martin, G. B., Huang, H.-C. & Collmer, A. ( 2007; ). A Pseudomonas syringae pv. tomato DC3000 mutant lacking the type III effector HopQ1-1 is able to cause disease in the model plant Nicotiana benthamiana. Plant J 51, 32–46.[CrossRef]
    [Google Scholar]
  52. Zwiesler-Vollick, J., Plovanich-Jones, A., Nomura, K., Bandyopadhyay, S., Joardar, V., Kunkel, B. N. & He, S. Y. ( 2002; ). Identification of novel hrp-regulated genes through functional genomic analysis of the Pseudomonas syringae pv. tomato DC3000 genome. Mol Microbiol 45, 1207–1218.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.027763-0
Loading
/content/journal/micro/10.1099/mic.0.027763-0
Loading

Data & Media loading...

Supplements

vol. , part 7, pp. 2235 - 2244

Primers and plasmids used for constructing the strains expressing the Cya fusion [ PDF] (40 kb)



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error