1887

Abstract

There are barriers to cross-expression of genes between spp. and . In this study, a -based reporter system was developed for and used to compare the promoter structure and function of a 4001 (BT4001) 16S rRNA promoter with those of . Analysis of the BT4001 sequences upstream of the 16S rRNA gene revealed the same overall structure known for 16S rRNA promoters in that there were two promoters separated by ∼150 bp. However, the BT4001 16S rRNA promoter contains the proposed −7 and −33 consensus sequences instead of the −10 and −35 consensus sequences. The biological activity of various configurations of the BT4001 16S rRNA promoter was analysed. Experiments pairing the BT4001 16S rRNA promoter with an RBS, and vice-versa, confirmed that gene expression between the two species is restricted at the level of transcription. In , a difference in translation initiation also appears to limit expression of foreign genes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.027748-0
2009-08-01
2020-01-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/8/2683.html?itemId=/content/journal/micro/10.1099/mic.0.027748-0&mimeType=html&fmt=ahah

References

  1. Amann E., Brosius J., Ptashne M.. 1983; Vectors bearing a hybrid trplac promoter useful for regulated expression of cloned genes in Escherichia coli. Gene25:167–178
    [Google Scholar]
  2. Bayley D. P., Rocha E. R., Smith C. J.. 2000; Analysis of cepA and other Bacteroides fragilis genes reveals a unique promoter structure. FEMS Microbiol Lett193:149–154
    [Google Scholar]
  3. Betermier M., Galas D. J., Chandler M.. 1994; Interaction of Fis protein with DNA: bending and specificity of binding. Biochimie76:958–967
    [Google Scholar]
  4. Cashel M., Gentry D. R., Hernandez V. H., Vinella D.. 1996; The stringent response. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology pp1458–1496 Edited by Neidhardt F. C., Curtis R. III, Ingraham J. L., Lin E. C. C., Low K. B., Magasanik B., Reznikoff W. S., Riley M., Schaechter M., Umbarger H. E.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  5. Chatzidaki-Livanis M., Coyne M. J., Roche-Hakansson H., Comstock L. E.. 2008; Expression of a uniquely regulated extracellular polysaccharide confers a large-capsule phenotype to Bacteroides fragilis. J Bacteriol190:1020–1026
    [Google Scholar]
  6. Chen S., Bagdasarian M., Kaufman M. G., Bates A. K., Walker E. D.. 2007a; Mutational analysis of the ompA promoter from Flavobacterium johnsoniae. J Bacteriol189:5108–5118
    [Google Scholar]
  7. Chen S., Bagdasarian M., Kaufman M. G., Walker E. D.. 2007b; Characterization of strong promoters from an environmental Flavobacterium hibernum strain by using a green fluorescent protein-based reporter system. Appl Environ Microbiol73:1089–1100
    [Google Scholar]
  8. Estrem S. T., Gaal T., Ross W., Gourse R. L.. 1998; Identification of an UP element consensus sequence for bacterial promoters. Proc Natl Acad Sci U S A95:9761–9766
    [Google Scholar]
  9. Feldhaus M. J., Hwa V., Cheng Q., Salyers A. A.. 1991; Use of an Escherichia coli β-glucuronidase gene as a reporter gene for investigation of Bacteroides promoters. J Bacteriol173:4540–4543
    [Google Scholar]
  10. Finney A. H., Blick R. J., Murakami K., Ishihama A., Stevens A. M.. 2002; Role of the C-terminal domain of the alpha subunit of RNA polymerase in LuxR-dependent transcriptional activation of the lux operon during quorum sensing. J Bacteriol184:4520–4528
    [Google Scholar]
  11. Gafny R., Cohen S., Nachaliel N., Glaser G.. 1994; Isolated P2 rRNA promoters of Escherichia coli are strong promoters that are subject to stringent control. J Mol Biol243:152–156
    [Google Scholar]
  12. Gourse R. L., Gaal T., Bartlett M. S., Appleman J. A., Ross W.. 1996; rRNA transcription and growth rate-dependent regulation of ribosome synthesis in Escherichia coli. Annu Rev Microbiol50:645–677
    [Google Scholar]
  13. Graves M. C., Rabinowitz J. C.. 1986; In vivo and in vitro transcription of the Clostridium pasteurianum ferredoxin gene. Evidence for “extended” promoter elements in Gram-positive organisms. J Biol Chem261:11409–11415
    [Google Scholar]
  14. Hanahan D.. 1983; Studies on transformation of Escherichia coli with plasmids. J Mol Biol166:557–580
    [Google Scholar]
  15. Hawley D. K., McClure W. R.. 1983; Compilation and analysis of Escherichia coli promoter DNA sequences. Nucleic Acids Res11:2237–2255
    [Google Scholar]
  16. Helmann J. D.. 1995; Compilation and analysis of Bacillus subtilis σ A-dependent promoter sequences: evidence for extended contact between RNA polymerase and upstream promoter DNA. Nucleic Acids Res23:2351–2360
    [Google Scholar]
  17. Holdeman L. V., Moore W. E. C.. 1975; Anaerobe Laboratory Manual , 4th edn. Blacksburg, VA: Virginia Polytechnic Institute and State University;
    [Google Scholar]
  18. Josaitis C. A., Gaal T., Gourse R. L.. 1995; Stringent control and growth-rate-dependent control have nonidentical promoter sequence requirements. Proc Natl Acad Sci U S A92:1117–1121
    [Google Scholar]
  19. Krinos C. M., Coyne M. J., Weinacht K. G., Tzianabos A. O., Kasper D. L., Comstock L. E.. 2001; Extensive surface diversity of a commensal microorganism by multiple DNA inversions. Nature414:555–558
    [Google Scholar]
  20. Lane D. J.. 1991; 16S/23S rRNA sequencing, In Nucleic Acid Techniques in Bacterial Systematics pp115–175 Edited by Stackebrandt E., Goodfellow M. Chichester, New York: Wiley;
    [Google Scholar]
  21. Lutz R., Bujard H.. 1997; Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1–I2 regulatory elements. Nucleic Acids Res25:1203–1210
    [Google Scholar]
  22. Murray H. D., Appleman J. A., Gourse R. L.. 2003; Regulation of the Escherichia coli rrnB P2 promoter. J Bacteriol185:28–34
    [Google Scholar]
  23. Ninnemann O., Koch C., Kahmann R.. 1992; The E. coli fis promoter is subject to stringent control and autoregulation. EMBO J11:1075–1083
    [Google Scholar]
  24. Pan N., Imlay J. A.. 2001; How does oxygen inhibit central metabolism in the obligate anaerobe Bacteroides thetaiotaomicron. Mol Microbiol39:1562–1571
    [Google Scholar]
  25. Phillips-Jones M. K.. 1993; Bioluminescence ( lux) expression in the anaerobe Clostridium perfringens. FEMS Microbiol Lett106:265–270
    [Google Scholar]
  26. Rao L., Ross W., Appleman J. A., Gaal T., Leirmo S., Schlax P. J., Record M. T. Jr, Gourse R. L.. 1994; Factor independent activation of rrnB P1. An “extended” promoter with an upstream element that dramatically increases promoter strength. J Mol Biol235:1421–1435
    [Google Scholar]
  27. Ringquist S., Shinedling S., Barrick D., Green L., Binkley J., Stormo G. D., Gold L.. 1992; Translation initiation in Escherichia coli: sequences within the ribosome-binding site. Mol Microbiol6:1219–1229
    [Google Scholar]
  28. Ross W., Gosink K. K., Salomon J., Igarashi K., Zou C., Ishihama A., Severinov K., Gourse R. L.. 1993; A third recognition element in bacterial promoters: DNA binding by the alpha subunit of RNA polymerase. Science262:1407–1413
    [Google Scholar]
  29. Ross W., Aiyar S. E., Salomon J., Gourse R. L.. 1998; Escherichia coli promoters with UP elements of different strengths: modular structure of bacterial promoters. J Bacteriol180:5375–5383
    [Google Scholar]
  30. Sarmientos P., Cashel M.. 1983; Carbon starvation and growth rate-dependent regulation of the Escherichia coli ribosomal RNA promoters: differential control of dual promoters. Proc Natl Acad Sci U S A80:7010–7013
    [Google Scholar]
  31. Shoemaker N. B., Getty C., Gardner J. F., Salyers A. A.. 1986; Tn 4351 transposes in Bacteroides spp. and mediates the integration of plasmid R751 into the Bacteroides chromosome. J Bacteriol165:929–936
    [Google Scholar]
  32. Shoemaker N. B., Wang G. R., Salyers A. A.. 1996; The Bacteroides mobilizable insertion element, NBU1, integrates into the 3′ end of a Leu-tRNA gene and has an integrase that is a member of the lambda integrase family. J Bacteriol178:3594–3600
    [Google Scholar]
  33. Simon R., Priefer U., Puhler A.. 1983; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Biotechnology (N Y ) 1:784–791
    [Google Scholar]
  34. Smith C. J., Rogers M. B., McKee M. L.. 1992; Heterologous gene expression in Bacteroides fragilis. Plasmid27:141–154
    [Google Scholar]
  35. Szittner R., Meighen E.. 1990; Nucleotide sequence, expression, and properties of luciferase coded by lux genes from a terrestrial bacterium. J Biol Chem265:16581–16587
    [Google Scholar]
  36. Travers A. A.. 1984; Conserved features of coordinately regulated E. coli promoters. Nucleic Acids Res12:2605–2618
    [Google Scholar]
  37. Tribble G. D., Parker A. C., Smith C. J.. 1999; Genetic structure and transcriptional analysis of a mobilizable, antibiotic resistance transposon from Bacteroides. Plasmid42:1–12
    [Google Scholar]
  38. Valentine P. J., Shoemaker N. B., Salyers A. A.. 1988; Mobilization of Bacteroides plasmids by Bacteroides conjugal elements. J Bacteriol170:1319–1324
    [Google Scholar]
  39. Van Dyk T. K., Rosson R. A.. 1998; Photorhabdus luminescens luxCDABE promoter probe vectors. Methods Mol Biol102:85–95
    [Google Scholar]
  40. Vingadassalom D., Kolb A., Mayer C., Rybkine T., Collatz E., Podglajen I.. 2005; An unusual primary sigma factor in the Bacteroidetes phylum. Mol Microbiol56:888–902
    [Google Scholar]
  41. Vingadassalom D., Kolb A., Mayer C., Collatz E., Podglajen I.. 2007; Probing the importance of selected phylum-specific amino acids in σ A of Bacteroides fragilis, a primary σ factor naturally devoid of an N-terminal acidic region 1.1. J Biol Chem282:3442–3449
    [Google Scholar]
  42. Weaver R.. 1999; The mechanism of translation I: initiation. In Molecular Biology pp531–564 Boston, MA: McGraw–Hill;
    [Google Scholar]
  43. Werner H.. 1974; Differentiation and medical importance of saccharolytic intestinal Bacteroides. Arzneimittelforschung24:340–343
    [Google Scholar]
  44. Whitehead T. R.. 1997; Development of a bifunctional xylosidase/arabinosidase gene as a reporter gene for the Gram-negative anaerobes Bacteroides and Porphyromonas, and Escherichia coli. Curr Microbiol35:282–286
    [Google Scholar]
  45. Whittle G., Shoemaker N. B., Salyers A. A.. 2002; Characterization of genes involved in modulation of conjugal transfer of the Bacteroides conjugative transposon CTnDOT. J Bacteriol184:3839–3847
    [Google Scholar]
  46. Xu J., Bjursell M. K., Himrod J., Deng S., Carmichael L. K., Chiang H. C., Hooper L. V., Gordon J. I.. 2003; A genomic view of the human– Bacteroides thetaiotaomicron symbiosis. Science299:2074–2076
    [Google Scholar]
  47. Yanisch-Perron C., Vieira J., Messing J.. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene33:103–119
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.027748-0
Loading
/content/journal/micro/10.1099/mic.0.027748-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error