1887

Abstract

is highly resistant to antimicrobial peptides and we hypothesized that the conversion of UDP-glucose to UDP-glucuronic acid, a reaction catalysed by the enzyme UDP-glucose dehydrogenase (Ugd) would be important for this resistance. The genome of contains three predicted genes: , and , all of which were individually inactivated. Only inactivation of resulted in increased sensitivity to polymyxin B and this sensitivity could be overcome when either or but not was expressed from plasmids. The growth of a conditional mutant, created in the Δ background, was significantly impaired under non-permissive conditions. Growth could be rescued by either or expressed , but not by . Biochemical analysis of the purified, recombinant forms of Ugd and Ugd revealed that they are soluble homodimers with similar Ugd activity and comparable kinetic constants for their substrates UDP-glucose and NAD. Purified Ugd showed no Ugd activity. Real-time PCR analysis showed that the expression of was 5.4- and 135-fold greater than that of and , respectively. Together, these data indicate that the combined activity of Ugd and Ugd is essential for the survival of but only the most highly expressed gene, , is required for polymyxin B resistance.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.027607-0
2009-06-01
2020-04-01
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/6/2029.html?itemId=/content/journal/micro/10.1099/mic.0.027607-0&mimeType=html&fmt=ahah

References

  1. Aaron S. D., Ferris W., Henry D. A., Speert D. P., Macdonald N. E.. 2000; Multiple combination bactericidal antibiotic testing for patients with cystic fibrosis infected with Burkholderia cepacia . Am J Respir Crit Care Med161:1206–1212
    [Google Scholar]
  2. Aubert D. F., Flannagan R. S., Valvano M. A.. 2008; A novel sensor kinase-response regulator hybrid controls biofilm formation and type VI secretion system activity in Burkholderia cenocepacia . Infect Immun76:1979–1991
    [Google Scholar]
  3. Bader M. W., Sanowar S., Daley M. E., Schneider A. R., Cho U., Xu W., Klevit R. E., Le Moual H., Miller S. I.. 2005; Recognition of antimicrobial peptides by a bacterial sensor kinase. Cell122:461–472
    [Google Scholar]
  4. Balandreau J., Viallard V., Cournoyer B., Coenye T., Laevens S., Vandamme P.. 2001; Burkholderia cepacia genomovar III is a common plant-associated bacterium. Appl Environ Microbiol67:982–985
    [Google Scholar]
  5. Breazeale S. D., Ribeiro A. A., Raetz C. R.. 2002; Oxidative decarboxylation of UDP-glucuronic acid in extracts of polymyxin-resistant Escherichia coli . Origin of lipid A species modified with 4-amino-4-deoxy-l-arabinose. J Biol Chem277:2886–2896
    [Google Scholar]
  6. Brogden K. A.. 2005; Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?. Nat Rev Microbiol3:238–250
    [Google Scholar]
  7. Burns J. L., Wadsworth C. D., Barry J. J., Goodall C. P.. 1996; Nucleotide sequence analysis of a gene from Burkholderia ( Pseudomonas ) cepacia encoding an outer membrane lipoprotein involved in multiple antibiotic resistance. Antimicrob Agents Chemother40:307–313
    [Google Scholar]
  8. Campbell R. E., Mosimann S. C., van De Rijn I., Tanner M. E., Strynadka N. C.. 2000; The first structure of UDP-glucose dehydrogenase reveals the catalytic residues necessary for the two-fold oxidation. Biochemistry39:7012–7023
    [Google Scholar]
  9. De Leon G. P., Elowe N. H., Koteva K. P., Valvano M. A., Wright G. D.. 2006; An in vitro screen of bacterial lipopolysaccharide biosynthetic enzymes identifies an inhibitor of ADP-heptose biosynthesis. Chem Biol13:437–441
    [Google Scholar]
  10. Ernst R. K., Yi E. C., Guo L., Lim K. B., Burns J. L., Hackett M., Miller S. I.. 1999; Specific lipopolysaccharide found in cystic fibrosis airway Pseudomonas aeruginosa . Science286:1561–1565
    [Google Scholar]
  11. Figurski D. H., Helinski D. R.. 1979; Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans . Proc Natl Acad Sci U S A76:1648–1652
    [Google Scholar]
  12. Flannagan R. S., Aubert D., Kooi C., Sokol P. A., Valvano M. A.. 2007; Burkholderia cenocepacia requires a periplasmic HtrA protease for growth under thermal and osmotic stress and for survival in vivo. Infect Immun75:1679–1689
    [Google Scholar]
  13. Flannagan R. S., Linn T., Valvano M. A.. 2008; A system for the construction of targeted unmarked gene deletions in the genus Burkholderia . Environ Microbiol10:1652–1660
    [Google Scholar]
  14. Ganz T.. 2003; Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol3:710–720
    [Google Scholar]
  15. Ge X., Penney L. C., van de Rijn I., Tanner M. E.. 2004; Active site residues and mechanism of UDP-glucose dehydrogenase. Eur J Biochem271:14–22
    [Google Scholar]
  16. Gold R., Jin E., Levison H., Isles A., Fleming P. C.. 1983; Ceftazidime alone and in combination in patients with cystic fibrosis: lack of efficacy in treatment of severe respiratory infections caused by Pseudomonas cepacia . J Antimicrob Chemother12:Suppl A331–336
    [Google Scholar]
  17. Helander I. M., Kilpelainen I., Vaara M.. 1994; Increased substitution of phosphate groups in lipopolysaccharides and lipid A of the polymyxin-resistant pmrA mutants of Salmonella typhimurium : a 31P-NMR study. Mol Microbiol11:481–487
    [Google Scholar]
  18. Hitchcock P. J., Brown T. M.. 1983; Morphological heterogeneity among Salmonella lipopolysaccharide chemotypes in silver-stained polyacrylamide gels. J Bacteriol154:269–277
    [Google Scholar]
  19. Holden M. T., Seth-Smith H. M., Crossman L. C., Sebaihia M., Bentley S. D., Cerdeño-Tárraga A. M., Thomson N. R., Bason N., Quail M. A.. other authors 2009; The genome of Burkholderia cenocepacia J2315, an epidemic pathogen of cystic fibrosis patients. J Bacteriol191:261–277
    [Google Scholar]
  20. Hung R. J., Chien H. S., Lin R. Z., Lin C. T., Vatsyayan J., Peng H. L., Chang H. Y.. 2007; Comparative analysis of two UDP-glucose dehydrogenases in Pseudomonas aeruginosa PAO1. J Biol Chem282:17738–17748
    [Google Scholar]
  21. Isles A., Maclusky I., Corey M., Gold R., Prober C., Fleming P., Levison H.. 1984; Pseudomonas cepacia infection in cystic fibrosis: an emerging problem. J Pediatr104:206–210
    [Google Scholar]
  22. Iwanicka-Nowicka R., Zielak A., Cook A. M., Thomas M. S., Hryniewicz M. M.. 2007; Regulation of sulfur assimilation pathways in Burkholderia cenocepacia : identification of transcription factors CysB and SsuR and their role in control of target genes. J Bacteriol189:1675–1688
    [Google Scholar]
  23. Kox L. F., Wösten M. M., Groisman E. A.. 2000; A small protein that mediates the activation of a two-component system by another two-component system. EMBO J19:1861–1872
    [Google Scholar]
  24. Loutet S. A., Flannagan R. S., Kooi C., Sokol P. A., Valvano M. A.. 2006; A complete lipopolysaccharide inner core oligosaccharide is required for resistance of Burkholderia cenocepacia to antimicrobial peptides and bacterial survival in vivo. J Bacteriol188:2073–2080
    [Google Scholar]
  25. Mahenthiralingam E., Coenye T., Chung J. W., Speert D. P., Govan J. R., Taylor P., Vandamme P.. 2000; Diagnostically and experimentally useful panel of strains from the Burkholderia cepacia complex. J Clin Microbiol38:910–913
    [Google Scholar]
  26. Mahenthiralingam E., Urban T. A., Goldberg J. B.. 2005; The multifarious, multireplicon Burkholderia cepacia complex. Nat Rev Microbiol3:144–156
    [Google Scholar]
  27. McPhee J. B., Lewenza S., Hancock R. E.. 2003; Cationic antimicrobial peptides activate a two-component regulatory system, PmrA-PmrB, that regulates resistance to polymyxin B and cationic antimicrobial peptides in Pseudomonas aeruginosa . Mol Microbiol50:205–217
    [Google Scholar]
  28. McPhee J. B., Bains M., Winsor G., Lewenza S., Kwasnicka A., Brazas M. D., Brinkman F. S. L., Hancock R. E. W.. 2006; Contribution of the PhoP-PhoQ and PmrA-PmrB two-component regulatory systems to Mg2+-induced gene regulation in Pseudomonas aeruginosa . J Bacteriol188:3995–4006
    [Google Scholar]
  29. Miller V. L., Mekalanos J. J.. 1988; A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR . J Bacteriol170:2575–2583
    [Google Scholar]
  30. Moreira L. M., Videira P. A., Sousa S. A., Leitão J. H., Cunha M. V., Sá-Correia I.. 2003; Identification and physical organization of the gene cluster involved in the biosynthesis of Burkholderia cepacia complex exopolysaccharide. Biochem Biophys Res Commun312:323–333
    [Google Scholar]
  31. Mouslim C., Groisman E. A.. 2003; Control of the Salmonella ugd gene by three two-component regulatory systems. Mol Microbiol47:335–344
    [Google Scholar]
  32. Nummila K., Kilpelainen I., Zähringer U., Vaara M., Helander I. M.. 1995; Lipopolysaccharides of polymyxin B-resistant mutants of Escherichia coli are extensively substituted by 2-aminoethyl pyrophosphate and contain aminoarabinose in lipid A. Mol Microbiol16:271–278
    [Google Scholar]
  33. Ortega X. P., Cardona S. T., Brown A. R., Loutet S. A., Flannagan R. S., Campopiano D. J., Govan J. R., Valvano M. A.. 2007; A putative gene cluster for aminoarabinose biosynthesis is essential for Burkholderia cenocepacia viability. J Bacteriol189:3639–3644
    [Google Scholar]
  34. Patrzykat A., Friedrich C. L., Zhang L., Mendoza V., Hancock R. E.. 2002; Sublethal concentrations of pleurocidin-derived antimicrobial peptides inhibit macromolecular synthesis in Escherichia coli . Antimicrob Agents Chemother46:605–614
    [Google Scholar]
  35. Raetz C. R., Whitfield C.. 2002; Lipopolysaccharide endotoxins. Annu Rev Biochem71:635–700
    [Google Scholar]
  36. Rossman M. G.. 1981; Evolution of glycolytic enzymes. Philos Trans R Soc Lond B Biol Sci293:191–203
    [Google Scholar]
  37. Silipo A., Molinaro A., Cescutti P., Bedini E., Rizzo R., Parrilli M., Lanzetta R.. 2005; Complete structural characterization of the lipid A fraction of a clinical strain of B. cepacia genomovar I lipopolysaccharide. Glycobiology15:561–570
    [Google Scholar]
  38. Strominger J. L., Maxwell E. S., Axelrod J., Kalckar H. M.. 1957; Enzymatic formation of uridine diphosphoglucuronic acid. J Biol Chem224:79–90
    [Google Scholar]
  39. Turner J., Cho Y., Dinh N. N., Waring A. J., Lehrer R. I.. 1998; Activities of LL-37, a cathelin-associated antimicrobial peptide of human neutrophils. Antimicrob Agents Chemother42:2206–2214
    [Google Scholar]
  40. Vaara M., Vaara T., Jensen M., Helander I., Nurminen M., Rietschel E. T., Mäkelä P. H.. 1981; Characterization of the lipopolysaccharide from the polymyxin-resistant pmrA mutants of Salmonella typhimurium . FEBS Lett129:145–149
    [Google Scholar]
  41. Wösten M. M. S. M., Kox L. F. F., Chamnongpol S., Soncini F. C., Groisman E. A.. 2000; A signal transduction system that responds to extracellular iron. Cell103:113–125
    [Google Scholar]
  42. Zanetti M.. 2004; Cathelicidins, multifunctional peptides of the innate immunity. J Leukoc Biol75:39–48
    [Google Scholar]
  43. Zhang L., Parente J., Harris S. M., Woods D. E., Hancock R. E., Falla T. J.. 2005; Antimicrobial peptide therapeutics for cystic fibrosis. Antimicrob Agents Chemother49:2921–2927
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.027607-0
Loading
/content/journal/micro/10.1099/mic.0.027607-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error