HrpW is a pectin-degrading enzyme and differs from phytopathogenic homologues in enzymically crucial tryptophan and glycine residues Free

Abstract

While establishing a nitrogen-fixing symbiosis with leguminous plants, rhizobia are faced with the problem of penetrating the plant cell wall at several stages of the infection process. One of the major components of this barrier is pectin, a heteropolysaccharide composed mainly of galacturonic acid subunits. So far, no enzymes capable of degrading pectin have been isolated from rhizobia. Here, we make an inventory of rhizobial candidate pectinolytic enzymes based on available genome sequence data and present an initial biochemical and functional characterization of a protein selected from this list. is associated with genes encoding a type III secretion system, a macromolecular structure that allows bacteria to directly inject so-called effector proteins into a eukaryotic host's cell cytosol and an essential virulence determinant of many Gram-negative pathogenic bacteria. In contrast to harpin HrpW from phytopathogens, HrpW possesses pectate lyase activity and is most active on highly methylated substrates. Through comparative sequence analysis, three amino acid residues crucial for the observed enzymic activity were identified: Trp192, Gly212 and Gly213. Their importance was confirmed by site-directed mutagenesis and biochemical characterization of the resulting proteins, with the tryptophan mutant showing no detectable pectate lyase activity and the double-glycine mutant's activity reduced by about 80 %. Surprisingly, despite expression being induced specifically on the plant root surface, a knockout mutation of the gene does not appear to affect symbiosis with the common bean .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.027599-0
2009-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/9/3045.html?itemId=/content/journal/micro/10.1099/mic.0.027599-0&mimeType=html&fmt=ahah

References

  1. Abbott D. W., Boraston A. B. 2007; Specific recognition of saturated and 4,5-unsaturated hexuronate sugars by a periplasmic binding protein involved in pectin catabolism. J Mol Biol 369:759–770
    [Google Scholar]
  2. Akita M., Suzuki A., Kobayashi T., Ito S., Yamane T. 2001; The first structure of pectate lyase belonging to polysaccharide lyase family 3. Acta Crystallogr D Biol Crystallogr 57:1786–1792
    [Google Scholar]
  3. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402
    [Google Scholar]
  4. Benen J. A. E., Visser J. 2003; Pectate and pectin lyases. In Handbook of Food Enzymology pp 1029–1041 Edited by Whitaker J. R., Voragen A. G. J., Wong D. W. S. New York: Marcel Dekker;
    [Google Scholar]
  5. Brewin N. J. 2004; Plant cell wall remodelling in the Rhizobium-legume symbiosis. Crit Rev Plant Sci 23:293–316
    [Google Scholar]
  6. Caldelari Baumberger I., Fraefel N., Gottfert M., Hennecke H. 2003; New NodW- or NifA-regulated Bradyrhizobium japonicum genes. Mol Plant Microbe Interact 16:342–351
    [Google Scholar]
  7. Cantarel B. L., Coutinho P. M., Rancurel C., Bernard T., Lombard V., Henrissat B. 2009; The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:D233–D238
    [Google Scholar]
  8. Charkowski A. O., Alfano J. R., Preston G., Yuan J., He S. Y., Collmer A. 1998; The Pseudomonas syringae pv. tomato HrpW protein has domains similar to harpins and pectate lyases and can elicit the plant hypersensitive response and bind to pectate. J Bacteriol 180:5211–5217
    [Google Scholar]
  9. D'Hooghe I., Michiels J., Vlassak K., Verreth C., Waelkens F., Vanderleyden J. 1995; Structural and functional analysis of the fixLJ genes of Rhizobium leguminosarum biovar phaseoli CNPAF512. Mol Gen Genet 249:117–126
    [Google Scholar]
  10. D'Hooghe I., Vander Wauven C., Michiels J., Tricot C., de Wilde P., Vanderleyden J., Stalon V. 1997; The arginine deiminase pathway in Rhizobium etli: DNA sequence analysis and functional study of the arcABC genes. J Bacteriol 179:7403–7409
    [Google Scholar]
  11. Dombrecht B., Vanderleyden J., Michiels J. 2001; Stable RK2-derived cloning vectors for the analysis of gene expression and gene function in gram-negative bacteria. Mol Plant Microbe Interact 14:426–430
    [Google Scholar]
  12. Dombrecht B., Tesfay M. Z., Verreth C., Heusdens C., Napoles M. C., Vanderleyden J., Michiels J. 2002; The Rhizobium etli gene iscN is highly expressed in bacteroids and required for nitrogen fixation. Mol Genet Genomics 267:820–828
    [Google Scholar]
  13. Dombrecht B., Heusdens C., Beullens S., Verreth C., Mulkers E., Proost P., Vanderleyden J., Michiels J. 2005; Defence of Rhizobium etli bacteroids against oxidative stress involves a complexly regulated atypical 2-Cys peroxiredoxin. Mol Microbiol 55:1207–1221
    [Google Scholar]
  14. Fauvart M., Michiels J. 2008; Rhizobial secreted proteins as determinants of host specificity in the Rhizobium-legume symbiosis. FEMS Microbiol Lett 285:1–9
    [Google Scholar]
  15. Fellay R., Frey J., Krisch H. 1987; Interposon mutagenesis of soil and water bacteria: a family of DNA fragments designed for in vitro insertional mutagenesis of gram-negative bacteria. Gene 52:147–154
    [Google Scholar]
  16. Figurski D. H., Helinski D. R. 1979; Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci U S A 76:1648–1652
    [Google Scholar]
  17. Flores M., Morales L., Avila A., Gonzalez V., Bustos P., Garcia D., Mora Y., Guo X., Collado-Vides J. other authors 2005; Diversification of DNA sequences in the symbiotic genome of Rhizobium etli . J Bacteriol 187:7185–7192
    [Google Scholar]
  18. Gage D. J. 2004; Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiol Mol Biol Rev 68:280–300
    [Google Scholar]
  19. Harlow E., Lane D. 1998 Antibodies: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  20. Hatada Y., Saito K., Koike K., Yoshimatsu T., Ozawa T., Kobayashi T., Ito S. 2000; Deduced amino-acid sequence and possible catalytic residues of a novel pectate lyase from an alkaliphilic strain of Bacillus . Eur J Biochem 267:2268–2275
    [Google Scholar]
  21. Herrero M., de Lorenzo V., Timmis K. N. 1990; Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria. J Bacteriol 172:6557–6567
    [Google Scholar]
  22. Hubbell D. H., Morales V. M., Umali-Garcia M. 1978; Pectolytic enzymes in Rhizobium . Appl Environ Microbiol 35:210–213
    [Google Scholar]
  23. Jayani R. S., Saxena S., Gupta R. 2005; Microbial pectinolytic enzymes: a review. Process Biochem 40:2931–2944
    [Google Scholar]
  24. Kim J. F., Beer S. V. 1998; HrpW of Erwinia amylovora, a new harpin that contains a domain homologous to pectate lyases of a distinct class. J Bacteriol 180:5203–5210
    [Google Scholar]
  25. Kvitko B. H., Ramos A. R., Morello J. E., Oh H. S., Collmer A. 2007; Identification of harpins in Pseudomonas syringae pv. tomato DC3000, which are functionally similar to HrpK1 in promoting translocation of type III secretion system effectors. J Bacteriol 189:8059–8072
    [Google Scholar]
  26. Marchler-Bauer A., Bryant S. H. 2004; CD-Search: protein domain annotations on the fly. Nucleic Acids Res 32:W327–W331
    [Google Scholar]
  27. Marchler-Bauer A., Anderson J. B., Derbyshire M. K., DeWeese-Scott C., Gonzales N. R., Gwadz M., Hao L., He S., Hurwitz D. I. other authors 2007; CDD: a conserved domain database for interactive domain family analysis. Nucleic Acids Res 35:D237–D240
    [Google Scholar]
  28. Marie C., Broughton W. J., Deakin W. J. 2001; Rhizobium type III secretion systems: legume charmers or alarmers?. Curr Opin Plant Biol 4:336–342
    [Google Scholar]
  29. Mateos P. F., Baker D. L., Petersen M., Velazquez E., Jimenez-Zurdo J. I., Martinez-Molina E., Squartini A., Orgambide G., Hubbell D. H. other authors 2001; Erosion of root epidermal cell walls by Rhizobium polysaccharide-degrading enzymes as related to primary host infection in the Rhizobium-legume symbiosis. Can J Microbiol 47:475–487
    [Google Scholar]
  30. Michiels J., Van Soom T., D'Hooghe I., Dombrecht B., Benhassine T., de Wilde P., Vanderleyden J. 1998; The Rhizobium etli rpoN locus: DNA sequence analysis and phenotypical characterization of rpoN, ptsN, and ptsA mutants. J Bacteriol 180:1729–1740
    [Google Scholar]
  31. Munoz J. A., Coronado C., Perez-Hormaeche J., Kondorosi A., Ratet P., Palomares A. J. 1998; MsPG3, a Medicago sativa polygalacturonase gene expressed during the alfalfa- Rhizobium meliloti interaction. Proc Natl Acad Sci U S A 95:9687–9692
    [Google Scholar]
  32. Nicholas K. B., Nicholas H. B. Jr, Deerfield D. W. II 1997; GeneDoc: analysis and visualization of genetic variation. EMBnet News 4:14–17
    [Google Scholar]
  33. O'Neill M. A., York W. S. 2003; The composition and structure of plant primary cell walls. In The Plant Cell Wall pp 92–110 Edited by Rose. Oxford, UK: Blackwell Publishing/CRC Press;
    [Google Scholar]
  34. Quandt J., Hynes M. F. 1993; Versatile suicide vectors which allow direct selection for gene replacement in gram-negative bacteria. Gene 127:15–21
    [Google Scholar]
  35. Rao M. N., Kembhavi A. A., Pant A. 1996; Role of lysine, tryptophan and calcium in the beta-elimination activity of a low-molecular-mass pectate lyase from Fusarium moniliformae . Biochem J 319:159–164
    [Google Scholar]
  36. Robledo M., Jimenez-Zurdo J. I., Velazquez E., Trujillo M. E., Zurdo-Pineiro J. L., Ramirez-Bahena M. H., Ramos B., Diaz-Minguez J. M., Dazzo F. other authors 2008; Rhizobium cellulase CelC2 is essential for primary symbiotic infection of legume host roots. Proc Natl Acad Sci U S A 105:7064–7069
    [Google Scholar]
  37. Rodriguez-Llorente I. D., Perez-Hormaeche J., El Mounadi K., Dary M., Caviedes M. A., Cosson V., Kondorosi A., Ratet P., Palomares A. J. 2004; From pollen tubes to infection threads: recruitment of Medicago floral pectic genes for symbiosis. Plant J 39:587–598
    [Google Scholar]
  38. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: Molecular Evolutionary Genetics Analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599
    [Google Scholar]
  39. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680
    [Google Scholar]
  40. van Spronsen P. C., Bakhuizen R., van Brussel A. A., Kijne J. W. 1994; Cell wall degradation during infection thread formation by the root nodule bacterium Rhizobium leguminosarum is a two-step process. Eur J Cell Biol 64:88–94
    [Google Scholar]
  41. Vincent J. M. 1970 A Manual for the Practical Study of the Root-Nodule Bacteria Oxford/Edinburgh, UK: Blackwell Scientific Publications;
    [Google Scholar]
  42. Xi C., Schoeters E., Vanderleyden J., Michiels J. 2000; Symbiosis-specific expression of Rhizobium etli casA encoding a secreted calmodulin-related protein. Proc Natl Acad Sci U S A 97:11114–11119
    [Google Scholar]
  43. Xi C., Dirix G., Hofkens J., Schryver F. C., Vanderleyden J., Michiels J. 2001; Use of dual marker transposons to identify new symbiosis genes in Rhizobium . Microb Ecol 41:325–332
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.027599-0
Loading
/content/journal/micro/10.1099/mic.0.027599-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed