1887

Abstract

Bacterial extracellular proteases play an important role in cell survival and cell–cell communication. A high-molecular-mass minor extracellular protease (Vpr) from a feather-degrading bacterium, DCUW, has been reported by our laboratory. In the present study, we cloned and expressed Vpr in . Complete nucleotide sequencing of this gene predicted that the protease is a member of the serine protease family, and domain analysis revealed that the protease consists of an N-terminal signal sequence for secretion, a subtilisin_N sequence that is a signature for N-terminal processing, a catalytic S_8 peptidase domain, and finally a long C-terminal protease-associated (PA) region containing nine intrinsically disordered subdomains. Four truncated constructs of the Vpr protease were cloned and expressed in . We found that the catalytic domain (amino acid residues 172–583) is sufficient for protease activity. Maturation of the Vpr protease needed both N-terminal and C-terminal processing. We have demonstrated that the oligomerization property is associated with the C-terminal protease-associated domain and also shown that the substrate-binding specificity to raw feather resides in this domain.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.027573-0
2009-06-01
2020-08-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/6/2049.html?itemId=/content/journal/micro/10.1099/mic.0.027573-0&mimeType=html&fmt=ahah

References

  1. Ageitos J. M., Vallejo J. A., Sestelo A. B. F., Poza M., Villa T. G.. 2007; Purification and characterization of a milk-clotting protease from Bacillus licheniformis strain USC13. J Appl Microbiol103:2205–2213
    [Google Scholar]
  2. Anson M. L.. 1938; The estimation of pepsin, trypsin, papain and cathepsin with hemoglobin. J Gen Physiol22:79–89
    [Google Scholar]
  3. Corvey C., Stein T., Düsterhus S., Karas M., Entian K. D.. 2003; Activation of subtilin precursors by Bacillus subtilis extracellular serine proteases subtilisin (AprE), WprA, and Vpr. Biochem Biophys Res Commun304:48–54
    [Google Scholar]
  4. Dalbey R. E., Lively M. O., Bron S., van Dijl J. M.. 1997; The chemistry and enzymology of the type I signal peptidases. Protein Sci6:1129–1138
    [Google Scholar]
  5. Dunker A. K., Obradovic Z.. 2001; The protein trinity – linking function and disorder. Nat Biotechnol19:805–806
    [Google Scholar]
  6. Dunker A. K., Lawson J. D., Brown C. J., Williams R. M., Romero P., Oh J. S., Oldfield C. J., Campen C. M., Ratliff C. M.. other authors 2001; Intrinsically disordered protein. J Mol Graph Model19:26–59
    [Google Scholar]
  7. Garnier J., Gibrat J. F., Robson B.. 1996; GOR method for predicting protein secondary structure from amino acid sequence. Methods Enzymol266:540–553
    [Google Scholar]
  8. Ghosh A., Maity B., Chakrabarti K., Chattopadhyay D.. 2007; Bacterial diversity of East Calcutta wet land area: possible identification of potential bacterial population for different biotechnological uses. Microb Ecol54:452–459
    [Google Scholar]
  9. Ghosh A., Chakrabarti K., Chattopadhyay D.. 2008; Degradation of raw feather by a novel high molecular weight extracellular protease from newly isolated Bacillus cereus DCUW. J Ind Microbiol Biotechnol35:825–834
    [Google Scholar]
  10. Heussen C., Dowdle E. B.. 1980; Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates. Anal Biochem102:196–202
    [Google Scholar]
  11. Inouye M.. 1991; Intramolecular chaperone: the role of the pro-peptide in protein folding. Enzyme45:314–321
    [Google Scholar]
  12. Itoi Y., Horinaka M., Tsujimoto Y., Matsui H., Watanabe K.. 2006; Characteristic features in the structure and collagen-binding ability of a thermophilic collagenolytic protease from thermophile Geobacillus collagenovorans MO-1. J Bacteriol188:6572–6579
    [Google Scholar]
  13. Ivanova N., Sorokin A., Anderson I., Galleron N., Candelon B., Kapatral V., Bhattacharyya A., Reznik G., Mikhailova N.. other authors 2003; Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis . Nature423:87–91
    [Google Scholar]
  14. Khan A. R., James M. N. G.. 1998; Molecular mechanisms for the conversion of zymogens to active proteolytic enzymes. Protein Sci7:815–836
    [Google Scholar]
  15. Kho C. W., Park S. G., Cho S., Lee D. H., Myung P. K., Park B. C.. 2005; Confirmation of Vpr as a fibrinolytic enzyme present in extracellular proteins of Bacillus subtilis . Protein Expr Purif39:1–7
    [Google Scholar]
  16. Laemmli U. K.. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227:680–685
    [Google Scholar]
  17. Lanigan-Gerdes S., Dooley A. N., Faull K. F., Lazazzera B. A.. 2007; Identification of subtilisin, Epr and Vpr as enzymes that produce CSF, an extracellular signalling peptide of Bacillus subtilis . Mol Microbiol65:1321–1333
    [Google Scholar]
  18. Lantz M. S., Ciborowski P.. 1994; Zymographic techniques for detection and characterization of microbial proteases. Methods Enzymol235:563–594
    [Google Scholar]
  19. Letunic I., Copley R. R., Pils B., Pinkert S., Schultz J., Bork P.. 2006; SMART 5: domains in the context of genomes and networks. Nucleic Acids Res34:D257–D260
    [Google Scholar]
  20. Ohta Y., Inouye M.. 1990; Pro-subtilisin E: purification and characterization of its auto-processing to active subtilisin E in vitro. Mol Microbiol4:295–304
    [Google Scholar]
  21. Okuda M., Sumitomo N., Takimura Y., Ogawa A., Saeki K., Kawai S., Kobayashi T., Ito S.. 2004; A new subtilisin family: nucleotide and deduced amino acid sequences of new high-molecular-mass alkaline proteases from Bacillus spp. Extremophiles8:229–235
    [Google Scholar]
  22. Pagni M., Ioannidis V., Cerutti L., Zahn-Zabal M., Jongeneel C. V., Falquet L.. 2004; MyHits: a new interactive resource for protein annotation and domain identification. Nucleic Acids Res32:W332–W335
    [Google Scholar]
  23. Palacin A., Parro V., Geukens N., Anne J., Mellado R. P.. 2002; SipY is the Streptomyces lividans type I signal peptidase exerting a major effect on protein secretion. J Bacteriol184:4875–4880
    [Google Scholar]
  24. Park S. G., Kho C. W., Cho S., Lee D. H., Kim S. H., Park B. C.. 2002; A functional proteomic analysis of secreted fibrinolytic enzymes from Bacillus subtilis 168 using a combined method of two-dimensional gel electrophoresis and zymography. Proteomics2:206–211
    [Google Scholar]
  25. Pugsley A. P.. 1993; The complete general secretory pathway in Gram-negative bacteria. Microbiol Rev57:50–108
    [Google Scholar]
  26. Quevillon E., Silventoinen V., Pillai S., Harte N., Mulder N., Apweiler R., Lopez R.. 2005; InterProScan: protein domains identifier. Nucleic Acids Res33:W116–W120
    [Google Scholar]
  27. Sarvas M., Harwood C. R., Bron S., van Dijl J. M.. 2004; Post-translocational folding of secretory proteins in Gram-positive bacteria. Biochim Biophys Acta1694:311–327
    [Google Scholar]
  28. Schmitz S. K.. 1990; An Introduction to Dynamic Light Scattering by Macromolecules New York: Academic Press;
  29. Shinde U., Inouye M.. 2000; Intramolecular chaperones: polypeptide extensions that modulate protein folding. Semin Cell Dev Biol11:35–44
    [Google Scholar]
  30. Sloma A., Rufo G. A. Jr, Theriault K. A., Dwyer M., Wilson S. W., Pero J.. 1991; Cloning and characterization of the gene for an additional extracellular serine protease of Bacillus subtilis . J Bacteriol173:6889–6895
    [Google Scholar]
  31. Strausberg S., Alexander P., Wang L., Schwarz F., Bryan P.. 1993; Catalysis of a protein folding reaction: thermodynamic and kinetic analysis of subtilsin BPN interactions with its propeptide fragment. Biochemistry32:8112–8119
    [Google Scholar]
  32. von Heijne G.. 1983; Patterns of amino acids near signal-sequence cleavage sites. Eur J Biochem133:17–21
    [Google Scholar]
  33. von Heijne G. V.. 1985; Signal sequences. The limits of variation. J Mol Biol184:99–105
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.027573-0
Loading
/content/journal/micro/10.1099/mic.0.027573-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error