1887

Abstract

Bacterial extracellular proteases play an important role in cell survival and cell–cell communication. A high-molecular-mass minor extracellular protease (Vpr) from a feather-degrading bacterium, DCUW, has been reported by our laboratory. In the present study, we cloned and expressed Vpr in . Complete nucleotide sequencing of this gene predicted that the protease is a member of the serine protease family, and domain analysis revealed that the protease consists of an N-terminal signal sequence for secretion, a subtilisin_N sequence that is a signature for N-terminal processing, a catalytic S_8 peptidase domain, and finally a long C-terminal protease-associated (PA) region containing nine intrinsically disordered subdomains. Four truncated constructs of the Vpr protease were cloned and expressed in . We found that the catalytic domain (amino acid residues 172–583) is sufficient for protease activity. Maturation of the Vpr protease needed both N-terminal and C-terminal processing. We have demonstrated that the oligomerization property is associated with the C-terminal protease-associated domain and also shown that the substrate-binding specificity to raw feather resides in this domain.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.027573-0
2009-06-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/6/2049.html?itemId=/content/journal/micro/10.1099/mic.0.027573-0&mimeType=html&fmt=ahah

References

  1. Ageitos, J. M., Vallejo, J. A., Sestelo, A. B. F., Poza, M. & Villa, T. G. ( 2007; ). Purification and characterization of a milk-clotting protease from Bacillus licheniformis strain USC13. J Appl Microbiol 103, 2205–2213.[CrossRef]
    [Google Scholar]
  2. Anson, M. L. ( 1938; ). The estimation of pepsin, trypsin, papain and cathepsin with hemoglobin. J Gen Physiol 22, 79–89.[CrossRef]
    [Google Scholar]
  3. Corvey, C., Stein, T., Düsterhus, S., Karas, M. & Entian, K. D. ( 2003; ). Activation of subtilin precursors by Bacillus subtilis extracellular serine proteases subtilisin (AprE), WprA, and Vpr. Biochem Biophys Res Commun 304, 48–54.[CrossRef]
    [Google Scholar]
  4. Dalbey, R. E., Lively, M. O., Bron, S. & van Dijl, J. M. ( 1997; ). The chemistry and enzymology of the type I signal peptidases. Protein Sci 6, 1129–1138.[CrossRef]
    [Google Scholar]
  5. Dunker, A. K. & Obradovic, Z. ( 2001; ). The protein trinity – linking function and disorder. Nat Biotechnol 19, 805–806.[CrossRef]
    [Google Scholar]
  6. Dunker, A. K., Lawson, J. D., Brown, C. J., Williams, R. M., Romero, P., Oh, J. S., Oldfield, C. J., Campen, C. M., Ratliff, C. M. & other authors ( 2001; ). Intrinsically disordered protein. J Mol Graph Model 19, 26–59.[CrossRef]
    [Google Scholar]
  7. Garnier, J., Gibrat, J. F. & Robson, B. ( 1996; ). GOR method for predicting protein secondary structure from amino acid sequence. Methods Enzymol 266, 540–553.
    [Google Scholar]
  8. Ghosh, A., Maity, B., Chakrabarti, K. & Chattopadhyay, D. ( 2007; ). Bacterial diversity of East Calcutta wet land area: possible identification of potential bacterial population for different biotechnological uses. Microb Ecol 54, 452–459.[CrossRef]
    [Google Scholar]
  9. Ghosh, A., Chakrabarti, K. & Chattopadhyay, D. ( 2008; ). Degradation of raw feather by a novel high molecular weight extracellular protease from newly isolated Bacillus cereus DCUW. J Ind Microbiol Biotechnol 35, 825–834.[CrossRef]
    [Google Scholar]
  10. Heussen, C. & Dowdle, E. B. ( 1980; ). Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates. Anal Biochem 102, 196–202.[CrossRef]
    [Google Scholar]
  11. Inouye, M. ( 1991; ). Intramolecular chaperone: the role of the pro-peptide in protein folding. Enzyme 45, 314–321.
    [Google Scholar]
  12. Itoi, Y., Horinaka, M., Tsujimoto, Y., Matsui, H. & Watanabe, K. ( 2006; ). Characteristic features in the structure and collagen-binding ability of a thermophilic collagenolytic protease from thermophile Geobacillus collagenovorans MO-1. J Bacteriol 188, 6572–6579.[CrossRef]
    [Google Scholar]
  13. Ivanova, N., Sorokin, A., Anderson, I., Galleron, N., Candelon, B., Kapatral, V., Bhattacharyya, A., Reznik, G., Mikhailova, N. & other authors ( 2003; ). Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis. Nature 423, 87–91.[CrossRef]
    [Google Scholar]
  14. Khan, A. R. & James, M. N. G. ( 1998; ). Molecular mechanisms for the conversion of zymogens to active proteolytic enzymes. Protein Sci 7, 815–836.
    [Google Scholar]
  15. Kho, C. W., Park, S. G., Cho, S., Lee, D. H., Myung, P. K. & Park, B. C. ( 2005; ). Confirmation of Vpr as a fibrinolytic enzyme present in extracellular proteins of Bacillus subtilis. Protein Expr Purif 39, 1–7.[CrossRef]
    [Google Scholar]
  16. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.[CrossRef]
    [Google Scholar]
  17. Lanigan-Gerdes, S., Dooley, A. N., Faull, K. F. & Lazazzera, B. A. ( 2007; ). Identification of subtilisin, Epr and Vpr as enzymes that produce CSF, an extracellular signalling peptide of Bacillus subtilis. Mol Microbiol 65, 1321–1333.[CrossRef]
    [Google Scholar]
  18. Lantz, M. S. & Ciborowski, P. ( 1994; ). Zymographic techniques for detection and characterization of microbial proteases. Methods Enzymol 235, 563–594.
    [Google Scholar]
  19. Letunic, I., Copley, R. R., Pils, B., Pinkert, S., Schultz, J. & Bork, P. ( 2006; ). SMART 5: domains in the context of genomes and networks. Nucleic Acids Res 34, D257–D260.[CrossRef]
    [Google Scholar]
  20. Ohta, Y. & Inouye, M. ( 1990; ). Pro-subtilisin E: purification and characterization of its auto-processing to active subtilisin E in vitro. Mol Microbiol 4, 295–304.[CrossRef]
    [Google Scholar]
  21. Okuda, M., Sumitomo, N., Takimura, Y., Ogawa, A., Saeki, K., Kawai, S., Kobayashi, T. & Ito, S. ( 2004; ). A new subtilisin family: nucleotide and deduced amino acid sequences of new high-molecular-mass alkaline proteases from Bacillus spp. Extremophiles 8, 229–235.[CrossRef]
    [Google Scholar]
  22. Pagni, M., Ioannidis, V., Cerutti, L., Zahn-Zabal, M., Jongeneel, C. V. & Falquet, L. ( 2004; ). MyHits: a new interactive resource for protein annotation and domain identification. Nucleic Acids Res 32, W332–W335.[CrossRef]
    [Google Scholar]
  23. Palacin, A., Parro, V., Geukens, N., Anne, J. & Mellado, R. P. ( 2002; ). SipY is the Streptomyces lividans type I signal peptidase exerting a major effect on protein secretion. J Bacteriol 184, 4875–4880.[CrossRef]
    [Google Scholar]
  24. Park, S. G., Kho, C. W., Cho, S., Lee, D. H., Kim, S. H. & Park, B. C. ( 2002; ). A functional proteomic analysis of secreted fibrinolytic enzymes from Bacillus subtilis 168 using a combined method of two-dimensional gel electrophoresis and zymography. Proteomics 2, 206–211.[CrossRef]
    [Google Scholar]
  25. Pugsley, A. P. ( 1993; ). The complete general secretory pathway in Gram-negative bacteria. Microbiol Rev 57, 50–108.
    [Google Scholar]
  26. Quevillon, E., Silventoinen, V., Pillai, S., Harte, N., Mulder, N., Apweiler, R. & Lopez, R. ( 2005; ). InterProScan: protein domains identifier. Nucleic Acids Res 33, W116–W120.[CrossRef]
    [Google Scholar]
  27. Sarvas, M., Harwood, C. R., Bron, S. & van Dijl, J. M. ( 2004; ). Post-translocational folding of secretory proteins in Gram-positive bacteria. Biochim Biophys Acta 1694, 311–327.
    [Google Scholar]
  28. Schmitz, S. K. ( 1990; ). An Introduction to Dynamic Light Scattering by Macromolecules. New York: Academic Press.
  29. Shinde, U. & Inouye, M. ( 2000; ). Intramolecular chaperones: polypeptide extensions that modulate protein folding. Semin Cell Dev Biol 11, 35–44.[CrossRef]
    [Google Scholar]
  30. Sloma, A., Rufo, G. A., Jr, Theriault, K. A., Dwyer, M., Wilson, S. W. & Pero, J. ( 1991; ). Cloning and characterization of the gene for an additional extracellular serine protease of Bacillus subtilis. J Bacteriol 173, 6889–6895.
    [Google Scholar]
  31. Strausberg, S., Alexander, P., Wang, L., Schwarz, F. & Bryan, P. ( 1993; ). Catalysis of a protein folding reaction: thermodynamic and kinetic analysis of subtilsin BPN interactions with its propeptide fragment. Biochemistry 32, 8112–8119.[CrossRef]
    [Google Scholar]
  32. von Heijne, G. ( 1983; ). Patterns of amino acids near signal-sequence cleavage sites. Eur J Biochem 133, 17–21.[CrossRef]
    [Google Scholar]
  33. von Heijne, G. V. ( 1985; ). Signal sequences. The limits of variation. J Mol Biol 184, 99–105.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.027573-0
Loading
/content/journal/micro/10.1099/mic.0.027573-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error