1887

Abstract

Clustered regularly interspaced short palindromic repeats (CRISPR) consist of highly conserved direct repeats interspersed with variable spacer sequences. They can protect bacteria against invasion by foreign DNA elements. The genome sequence of strain UA159 contains two CRISPR loci, designated CRISPR1 and CRISPR2. The aims of this study were to analyse the organization of CRISPR in further strains and to investigate the importance of CRISPR in acquired immunity to M102-like phages. The sequences of CRISPR1 and CRISPR2 arrays were determined for 29 strains from different persons. More than half of the CRISPR1 spacers and about 35 % of the CRISPR2 spacers showed sequence similarity with the genome sequence of M102, a virulent siphophage specific for . Although only a few spacers matched the phage sequence completely, most of the mismatches had no effect on the amino acid sequences of the phage-encoded proteins. The results suggest that is often attacked by M102-like bacteriophages, and that its acquisition of novel phage-derived CRISPR sequences goes along with the presence of phages in the environment. Analysis of CRISPR1 of M102-resistant mutants of OMZ 381 showed that some of them had acquired novel spacers, and the sequences of all but one of these matched the phage M102 genome sequence. This suggests that the acquisition of the spacers contributed to the resistance against phage infection. However, since not all resistant mutants had new spacers, and since the removal of the CRISPR1 array in one of the mutants and in wild-type strains did not lead to loss of resistance to infection by M102, the acquisition of resistance must be based on further elements as well.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.027508-0
2009-06-01
2020-09-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/6/1966.html?itemId=/content/journal/micro/10.1099/mic.0.027508-0&mimeType=html&fmt=ahah

References

  1. Ajdić D., McShan W. M., McLaughlin R. E., Savić G., Chang J., Carson M. B., Primeaux C., Tian R., Kenton S.. other authors 2002; Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proc Natl Acad Sci U S A99:14434–14439
    [Google Scholar]
  2. Armau E., Bousque J. L., Boue D., Tiraby G.. 1988; Isolation of lytic bacteriophages for Streptococcus mutans and Streptococcus sobrinus . J Dent Res67:121
    [Google Scholar]
  3. Bachrach G., Leizerovici-Zigmond M., Zlotkin A., Naor R., Steinberg D.. 2003; Bacteriophage isolation from human saliva. Lett Appl Microbiol36:50–53
    [Google Scholar]
  4. Barrangou R., Fremaux C., Deveau H., Richards M., Boyaval P., Moineau S., Romero D. A., Horvath P.. 2007; CRISPR provides acquired resistance against viruses in prokaryotes. Science315:1709–1712
    [Google Scholar]
  5. Bolotin A., Quinquis B., Sorokin A., Ehrlich S. D.. 2005; Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology151:2551–2561
    [Google Scholar]
  6. Brouns S. J. J., Jore M. M., Lundgren M., Westra E. R., Slijkhuis R. J. H., Snijders A. P. L., Dickman M. J., Makarova K. S., Koonin E. V.. other authors 2008; Small CRISPR RNAs guide antiviral defense in prokaryotes. Science321:960–964
    [Google Scholar]
  7. Carlsson J.. 1967; Presence of various types of non-haemolytic streptococci in dental plaque and in other sites of the oral cavity in man. Odontol Revy18:55–74
    [Google Scholar]
  8. Caufield P. W., Ratanapridakul K., Allen D. N., Cutter G. R.. 1988; Plasmid-containing strains of Streptococcus mutans cluster within family and racial cohorts: implications for natural transmission. Infect Immun56:3216–3220
    [Google Scholar]
  9. Crooks G. E., Hon G., Chandonia J.-M., Brenner S. E.. 2004; WebLogo: a sequence logo generator. Genome Res14:1188–1190
    [Google Scholar]
  10. Delisle A. L., Rostkowski C. A.. 1993; Lytic bacteriophages of Streptococcus mutans . Curr Microbiol27:163–167
    [Google Scholar]
  11. Demuth D. R., Lammey M. S., Huck M., Lally E. T., Malamud D.. 1990; Comparison of Streptococcus mutans and Streptococcus sanguis receptors for human salivary agglutinin. Microb Pathog9:199–211
    [Google Scholar]
  12. de Stoppelaar J. D., König K. G., Plasschaert A. J. M., Van der Hoeven J. S.. 1971; Decreased cariogenicity of a mutant of Streptococcus mutans . Arch Oral Biol16:971–975
    [Google Scholar]
  13. Deveau H., Barrangou R., Garneau J. E., Labonte J., Fremaux C., Boyaval P., Romero D. A., Horvath P., Moineau S.. 2008; Phage response to CRISPR-encoded resistance in Streptococcus thermophilus . J Bacteriol190:1390–1400
    [Google Scholar]
  14. Edwardsson S.. 1968; Characteristics of caries-inducing human streptococci resembling Streptococcus mutans . Arch Oral Biol13:637–646
    [Google Scholar]
  15. Forde A., Fitzgerald G. F.. 1999; Bacteriophage defence systems in lactic acid bacteria. Antonie Van Leeuwenhoek76:89–113
    [Google Scholar]
  16. Gibbons R. J., Berman K. S., Koettner P., Kapsimalis B.. 1966; Dental caries and alveolar bone loss in gnotobiotic rats infected with capsule-forming streptococci of human origin. Arch Oral Biol11:549–560
    [Google Scholar]
  17. Glaser P., Rusniok C., Buchrieser C., Chevalier F., Frangeul L., Msadek T., Zouine M., Couve E., Lalioui L.. other authors 2002; Genome sequence of Streptococcus agalactiae , a pathogen causing invasive neonatal disease. Mol Microbiol45:1499–1513
    [Google Scholar]
  18. Grissa I., Vergnaud G., Pourcel C.. 2007; CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucl Acids Res35:Web Server issueW52–W57
    [Google Scholar]
  19. Grönroos L., Alaluusua S.. 2000; Site-specific oral colonization of mutans streptococci detected by arbitrarily primed PCR fingerprinting. Caries Res34:474–480
    [Google Scholar]
  20. Guggenheim B.. 1968; Streptococci of dental plaques. Caries Res2:147–163
    [Google Scholar]
  21. Haft D. H., Selengut J., Mongodin E. F., Nelson K. E.. 2005; A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLOS Comput Biol1:e60
    [Google Scholar]
  22. Hamada S., Ooshima T.. 1975; Inhibitory spectrum of a bacteriocinlike substance (mutacin) produced by some strains of Streptococcus mutans . J Dent Res54:140–145
    [Google Scholar]
  23. Hamada S., Masuda N., Kotani S.. 1980; Isolation and serotyping of Streptococcus mutans from teeth and feces of children. J Clin Microbiol11:314–318
    [Google Scholar]
  24. Horvath P., Coûté-Monvoisin A.-C., Romero D. A., Boyaval P., Fremaux C., Barrangou R.. 2008a; Comparative analysis of CRISPR loci in lactic acid bacteria genomes. Int J Food Microbiol
    [Google Scholar]
  25. Horvath P., Romero D. A., Coute-Monvoisin A.-C., Richards M., Deveau H., Moineau S., Boyaval P., Fremaux C., Barrangou R.. 2008b; Diversity, activity and evolution of CRISPR loci in Streptococcus thermophilus . J Bacteriol190:1401–1412
    [Google Scholar]
  26. Krasse B.. 1966; Human streptococci and experimental caries in hamsters. Arch Oral Biol11:429–436
    [Google Scholar]
  27. Kunin V., Sorek R., Hugenholtz P.. 2007; Evolutionary conservation of sequence and secondary structures in CRISPR repeats. Genome Biol8:R61
    [Google Scholar]
  28. Makarova K. S., Grishin N. V., Shabalina S. A., Wolf Y. I., Koonin E. V.. 2006; A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol Direct1: 7
    [Google Scholar]
  29. Marraffini L. A., Sontheimer E. J.. 2008; CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science322:1843–1845
    [Google Scholar]
  30. McShan W. M., Ferretti J. J., Karasawa T., Suvorov A. N., Lin S., Qin B., Jia H., Kenton S., Najar F.. other authors 2008; Genome sequence of a nephritogenic and highly transformable M49 strain of Streptococcus pyogenes . J Bacteriol190:7773–7785
    [Google Scholar]
  31. Paster B. J., Boches S. K., Galvin J. L., Ericson R. E., Lau C. N., Levanos V. A., Sahasrabudhe A., Dewhirst F. E.. 2001; Bacterial diversity in human subgingival plaque. J Bacteriol183:3770–3783
    [Google Scholar]
  32. Perry D., Kuramitsu H. K.. 1981; Genetic transformation of Streptococcus mutans . Infect Immun32:1295–1297
    [Google Scholar]
  33. Podbielski A., Spellerberg B., Woischnik M., Pohl B., Lütticken R.. 1996; Novel series of plasmid vectors for gene inactivation and expression analysis in group A streptococci (GAS. Gene177:137–147
    [Google Scholar]
  34. Shibata Y., Ozaki K., Seki M., Kawato T., Tanaka H., Nakano Y., Yamashita Y.. 2003; Analysis of loci required for determination of serotype antigenicity in Streptococcus mutans and its clinical utilization. J Clin Microbiol41:4107–4112
    [Google Scholar]
  35. Shibata Y., Yamashita Y., van der Ploeg J. R.. 2009; The serotype-specific glucose side chain of rhamnose–glucose polysaccharides is essential for adsorption of bacteriophage M102 to Streptococcus mutans . FEMS Microbiol Lett294:68–73
    [Google Scholar]
  36. Sorek R., Kunin V., Hugenholtz P.. 2008; CRISPR – a widespread system that provides acquired resistance against phages in bacteria and archaea. Nat Rev Microbiol6:181–186
    [Google Scholar]
  37. Thurnheer T., Giertsen E., Gmür R., Guggenheim B.. 2008; Cariogenicity of soluble starch in oral in vitro biofilm and experimental rat caries studies: a comparison. J Appl Microbiol105:829–836
    [Google Scholar]
  38. van der Ploeg J. R.. 2007; Genome sequence of Streptococcus mutans bacteriophage M102. FEMS Microbiol Lett275:130–138
    [Google Scholar]
  39. Waterhouse J. C., Russell R. R. B.. 2006; Dispensable genes and foreign DNA in Streptococcus mutans . Microbiology152:1777–1788
    [Google Scholar]
  40. Waterhouse J. C., Swan D. C., Russell R. R. B.. 2007; Comparative genome hybridization of Streptococcus mutans strains. Oral Microbiol Immunol22:103–110
    [Google Scholar]
  41. Zhou X., Caufield P. W., Li Y., Qi F.. 2001; Complete nucleotide sequence and characterization of pUA140, a cryptic plasmid from Streptococcus mutans . Plasmid46:77–85
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.027508-0
Loading
/content/journal/micro/10.1099/mic.0.027508-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error