1887

Abstract

Molecules of mitochondrial DNA (mtDNA) are packed into nucleic acid–protein complexes termed mitochondrial nucleoids (mt-nucleoids). In this study, we analysed mt-nucleoids of the yeast , which harbours a linear form of the mitochondrial genome. To identify conserved as well as specific features of mt-nucleoids in this species, we employed two strategies for analysis of their components. First, we investigated the protein composition of mt-nucleoids isolated from mitochondria, determined N-terminal amino acid sequences of 14 proteins associated with the mt-nucleoids and identified corresponding genes. Next, we complemented the list of mt-nucleoid components with additional candidates identified in the complete genome sequence of as homologues of mt-nucleoid proteins. Our approach revealed several known mt-nucleoid proteins as well as additional components that expand the repertoire of proteins associated with these cytological structures. In particular, we identified and purified the protein Gcf1, which is abundant in the mt-nucleoids and exhibits structural features in common with the mtDNA packaging protein Abf2 from . We demonstrate that Gcf1p co-localizes with mtDNA, has DNA-binding activity , and is able to stabilize mtDNA in the Δ mutant, all of which points to a role in the maintenance of the mitochondrial genome. Importantly, in contrast to Abf2p, analysis of Gcf1p predicted the presence of a coiled-coil domain and a single high-mobility group (HMG) box, suggesting that it represents a novel type of mitochondrial HMG protein.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.027474-0
2009-05-01
2020-07-11
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/5/1558.html?itemId=/content/journal/micro/10.1099/mic.0.027474-0&mimeType=html&fmt=ahah

References

  1. Bogenhagen D. F., Rousseau D., Burke S.. 2008; The layered structure of human mitochondrial DNA nucleoids. J Biol Chem283:3665–3675
    [Google Scholar]
  2. Bryan A. C., Rodeheffer M. S., Wearn C. M., Shadel G. S.. 2002; Sls1p is a membrane-bound regulator of transcription-coupled processes involved in Saccharomyces cerevisiae mitochondrial gene expression. Genetics160:75–82
    [Google Scholar]
  3. Caron F., Jacq C., Rouviere-Yaniv J.. 1979; Characterization of a histone-like protein extracted from yeast mitochondria. Proc Natl Acad Sci U S A76:4265–4269
    [Google Scholar]
  4. Chen X. J., Butow R. A.. 2005; The organization and inheritance of the mitochondrial genome. Nat Rev Genet6:815–825
    [Google Scholar]
  5. Chen X. J., Wang X., Kaufman B. A., Butow R. A.. 2005; Aconitase couples metabolic regulation to mitochondrial DNA maintenance. Science307:714–717
    [Google Scholar]
  6. Claros M. G., Vincens P.. 1996; Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem241:779–786
    [Google Scholar]
  7. Dequard-Chablat M., Alland C.. 2002; Two copies of mthmg1 , encoding a novel mitochondrial HMG-like protein, delay accumulation of mitochondrial DNA deletions in Podospora anserina . Eukaryot Cell1:503–513
    [Google Scholar]
  8. Diffley J. F. X., Stillman B.. 1991; A close relative of the nuclear, chromosomal high-mobility group protein HMG1 in yeast mitochondria. Proc Natl Acad Sci U S A88:7864–7868
    [Google Scholar]
  9. Diffley J. F. X., Stillman B.. 1992; DNA binding properties of an HMG1-related protein from yeast mitochondria. J Biol Chem267:3368–3374
    [Google Scholar]
  10. Fisher R. P., Clayton D. A.. 1988; Purification and characterization of human mitochondrial transcription factor 1. Mol Cell Biol8:3496–3509
    [Google Scholar]
  11. Guda C., Guda P., Fahy E., Subramaniam S.. 2004; mitopred: a web server for the prediction of mitochondrial proteins. Nucleic Acids Res32:W372–W374
    [Google Scholar]
  12. Kaufman B. A., Newman S. M., Hallberg R. L., Slaughter C. A., Perlman P. S., Butow R. A.. 2000; In organello formaldehyde crosslinking of proteins to mtDNA: identification of bifunctional proteins. Proc Natl Acad Sci U S A97:7772–7777
    [Google Scholar]
  13. Kosa P., Gavenciakova B., Nosek J.. 2007; Development of a set of plasmid vectors for genetic manipulations of the pathogenic yeast Candida parapsilosis . Gene396:338–345
    [Google Scholar]
  14. Kucej M., Butow R. A.. 2007; Evolutionary tinkering with mitochondrial nucleoids. Trends Cell Biol17:586–592
    [Google Scholar]
  15. Kucej M., Kucejova B., Subramanian R., Chen X. J., Butow R. A.. 2008; Mitochondrial nucleoids undergo remodeling in response to metabolic cues. J Cell Sci121:1861–1868
    [Google Scholar]
  16. Kuroiwa T.. 1982; Mitochondrial nuclei. Int Rev Cytol75:1–59
    [Google Scholar]
  17. Letunic I., Copley R. R., Pils B., Pinkert S., Schultz J., Bork P.. 2006; smart 5: domains in the context of genomes and networks. Nucleic Acids Res34:D257–D260
    [Google Scholar]
  18. Lupas A., Van Dyke M., Stock J.. 1991; Predicting coiled coils from protein sequences. Science252:1162–1164
    [Google Scholar]
  19. Matsunaga M., Jaehning J. A.. 2004; Intrinsic promoter recognition by a “core” RNA polymerase. J Biol Chem279:44239–44242
    [Google Scholar]
  20. Miyakawa I., Sato H.. 2001; Analysis of mitochondrial nucleoid proteins of yeast Saccharomyces cerevisiae by means of two-dimensional gel electrophoresis. Cytologia ( Tokyo ) 66:99–104
    [Google Scholar]
  21. Miyakawa I., Yawata K.. 2007; Purification of an Abf2p-like protein from mitochondrial nucleoids of yeast Pichia jadinii and its role in the packaging of mitochondrial DNA. Antonie Van Leeuwenhoek91:197–207
    [Google Scholar]
  22. Miyakawa I., Sando N., Kawano S., Nakamura S., Kuroiwa T.. 1987; Isolation of morphologically intact mitochondrial mt-nucleoids from the yeast, Saccharomyces cerevisiae . J Cell Sci88:431–439
    [Google Scholar]
  23. Miyakawa I., Fumoto S., Kuroiwa T., Sando N.. 1995; Characterization of DNA-binding proteins involved in the assembly of mitochondrial mt-nucleoids in the yeast Saccharomyces cerevisiae . Plant Cell Physiol36:1179–1188
    [Google Scholar]
  24. Miyakawa I., Okazaki-Higashi C., Higashi T., Furutani Y., Sando N.. 1996; Isolation and characterization of mitochondrial mt-nucleoids from the yeast Pichia jadinii . Plant Cell Physiol37:816–824
    [Google Scholar]
  25. Miyakawa I., Kitamura Y., Jyozaki T., Sato H., Umezaki T.. 2000; Simple detection of a yeast mitochondrial DNA-binding protein, Abf2p, on SDS-DNA gels. J Gen Appl Microbiol46:311–316
    [Google Scholar]
  26. Miyakawa I., Sato H., Maruyama Y., Nakaoka T.. 2003; Isolation of the mitochondrial mt-nucleoids from yeast Kluyveromyces lactis and analyses of the mt-nucleoid proteins. J Gen Appl Microbiol49:85–93
    [Google Scholar]
  27. Nakai K., Kanehisa M.. 1992; A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics14:897–911
    [Google Scholar]
  28. Nicholas K. B., Nicholas H. B., Deerfield D. W.. 1997; GeneDoc: analysis and visualization of genetic variation. EMBnet NEWS4:14–17
    [Google Scholar]
  29. Nosek J., Dinouel N., Kovac L., Fukuhara H.. 1995; Linear mitochondrial DNAs from yeasts: telomeres with large tandem repetitions. Mol Gen Genet247:61–72
    [Google Scholar]
  30. Nosek J., Tomaska L., Pagacova B., Fukuhara H.. 1999; Mitochondrial telomere-binding protein from Candida parapsilosis suggests an evolutionary adaptation of a nonspecific single-stranded DNA-binding protein. J Biol Chem274:8850–8857
    [Google Scholar]
  31. Nosek J., Adamikova L., Zemanova J., Tomaska L., Zufferey R., Mamoun C. B.. 2002; Genetic manipulation of the pathogenic yeast Candida parapsilosis . Curr Genet42:27–35
    [Google Scholar]
  32. Nosek J., Novotna M., Hlavatovicova Z., Ussery D. W., Fajkus J., Tomaska L.. 2004; Complete DNA sequence of the linear mitochondrial genome of the pathogenic yeast Candida parapsilosis . Mol Genet Genomics272:173–180
    [Google Scholar]
  33. Nosek J., Rycovska A., Makhov M. A., Griffith D. J., Tomaska L.. 2005; Amplification of telomeric arrays via rolling-circle mechanism. J Biol Chem280:10840–10845
    [Google Scholar]
  34. Nosek J., Tomaska L., Bolotin-Fukuhara M., Miyakawa I.. 2006; Mitochondrial chromosome structure: an insight from analysis of complete yeast genomes. FEMS Yeast Res6:356–370
    [Google Scholar]
  35. Oakley B. R., Kirsch D. R., Morris N. R.. 1980; A simplified ultrasensitive silver stain. Anal Biochem105:361–363
    [Google Scholar]
  36. Rodeheffer M. S., Shadel G. S.. 2003; Multiple interactions involving the amino-terminal domain of yeast mtRNA polymerase determine the efficiency of mitochondrial protein synthesis. J Biol Chem278:18695–18701
    [Google Scholar]
  37. Rosenthal A. L., Lacks S. A.. 1977; Nuclease detection in SDS-polyacrylamide gel electrophoresis. Anal Biochem80:76–90
    [Google Scholar]
  38. Sakai A., Takano H., Kuroiwa T.. 2004; Organelle nuclei in higher plants: structure, composition, function and evolution. Int Rev Cytol238:59–118
    [Google Scholar]
  39. Sasaki N., Kuroiwa H., Nishitani C., Takano H., Higashiyama T., Kobayashi T., Shirai Y., Sakai A., Kawano S.. other authors 2003; Glom is a novel mitochondrial DNA packaging protein in Physarum polycephalum and causes intense chromatin condensation without suppressing DNA functions. Mol Biol Cell14:4758–4769
    [Google Scholar]
  40. Sato H., Miyakawa I.. 2004; A 22-kDa protein specific for yeast mitochondrial mt-nucleoids is an unidentified putative ribosomal protein encoded in open reading frame YGL068W. Protoplasma223:175–182
    [Google Scholar]
  41. Sato H., Tachifuji A., Tamura M., Miyakawa I.. 2002; Identification of the YMN-1 antigen protein and biochemical analyses of protein components in the mitochondrial mt-nucleoid fraction of the yeast Saccharomyces cerevisiae . Protoplasma219:51–58
    [Google Scholar]
  42. Tomaska L., Nosek J., Fukuhara H.. 1997; Identification of a putative mitochondrial telomere-binding-protein of the yeast Candida parapsilosis . J Biol Chem272:3049–3056
    [Google Scholar]
  43. Tomaska L., Nosek J., Makhov A. M., Pastorakova A., Griffith J. D.. 2000; Extragenomic double-stranded DNA circles in yeast with linear mitochondrial genomes: potential involvement in telomere maintenance. Nucleic Acids Res28:4479–4487
    [Google Scholar]
  44. Tomaska L., Makhov A. M., Nosek J., Kucejova B., Griffith J. D.. 2001; Electron microscopic analysis supports a dual role for the mitochondrial telomere-binding protein of Candida parapsilosis . J Mol Biol305:61–69
    [Google Scholar]
  45. Umezaki T., Miyakawa I.. 2002; Use of SDS-DNA PAGE for detection of mitochondrial Abf2p-like proteins and mitochondrial nuclease in Saccharomyces yeasts and Arxiozyma telluris . Cytologia ( Tokyo ) 67:423–428
    [Google Scholar]
  46. Visacka K., Gerhold J. M., Petrovicova J., Kinsky S., Jõers P., Nosek J., Sedman J., Tomaska L.. 2009; Novel subfamily of mitochondrial HMG box-containing proteins: functional analysis of Gcf1p from Candida albicans . Microbiology155:1226–1240
    [Google Scholar]
  47. Wang Y., Bogenhagen D. F.. 2006; Human mitochondrial DNA nucleoids are linked to protein folding machinery and metabolic enzymes at the mitochondrial inner membrane. J Biol Chem281:25791–25802
    [Google Scholar]
  48. Zelenaya-Troitskaya O., Newman S. M., Okamoto K., Perlman P. S., Butow R. A.. 1998; Functions of the high mobility group protein, Abf2p, in mitochondrial DNA segregation, recombination and copy number in Saccharomyces cerevisiae . Genetics148:1763–1776
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.027474-0
Loading
/content/journal/micro/10.1099/mic.0.027474-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error