Two novel metal-independent long-chain alkyl alcohol dehydrogenases from NG80-2 Free

Abstract

Two alkyl alcohol dehydrogenase (ADH) genes from the long-chain alkane-degrading strain NG80-2 were characterized . ADH1 and ADH2 were prepared heterologously in as a homooctameric and a homodimeric protein, respectively. Both ADHs can oxidize a broad range of alkyl alcohols up to at least C, as well as 1,3-propanediol and acetaldehyde. ADH1 also oxidizes glycerol, and ADH2 oxidizes isopropyl alcohol, isoamylol, acetone, octanal and decanal. The best substrate is ethanol for ADH1 and 1-octanol for ADH2. For both ADHs, the optimum assay condition is at 60 °C and pH 8.0, and both NAD and NADP can be used as the cofactor. Sequence analysis reveals that ADH1 and ADH2 belong to the Fe-containing/activated long-chain ADHs. However, the two enzymes contain neither Fe nor other metals, and Fe is not required for the activity, suggesting a new type of ADH. The ADHs characterized here are potentially useful in crude oil bioremediation and other bioconversion processes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.027201-0
2009-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/6/2078.html?itemId=/content/journal/micro/10.1099/mic.0.027201-0&mimeType=html&fmt=ahah

References

  1. Antoine E., Rolland J. L., Raffin J. P., Dietrich J. 1999; Cloning and over-expression in Escherichia coli of the gene encoding NADPH group III alcohol dehydrogenase from Thermococcus hydrothermalis . Eur J Biochem 264:880–889
    [Google Scholar]
  2. Bairoch A. 1992; PROSITE: a dictionary of sites and patterns in proteins. Nucleic Acids Res 20:Suppl2013–2018
    [Google Scholar]
  3. Bakshi E. N., Tse P., Murray K. S., Hanson G. R., Scopes R. K., Wedd A. G. 1989; Iron-activated alcohol dehydrogenase from Zymomonas mobilis : spectroscopic and magnetic properties. J Am Chem Soc 111:8707–8713
    [Google Scholar]
  4. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
    [Google Scholar]
  5. Daniel R., Boenigk R., Gottschalk G. 1995; Purification of 1,3-propanediol dehydrogenase from Citrobacter freundii and cloning, sequencing, and overexpression of the corresponding gene in Escherichia coli . J Bacteriol 177:2151–2156
    [Google Scholar]
  6. Feng L., Wang W., Cheng J., Ren Y., Zhao G., Gao C., Tang Y., Liu X., Han W. other authors 2007; Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrificans NG80-2 isolated from a deep-subsurface oil reservoir. Proc Natl Acad Sci U S A 104:5602–5607
    [Google Scholar]
  7. Guagliardi A., Martino M., Iaccarino I., De Rosa M., Rossi M., Bartolucci S. 1996; Purification and characterization of the alcohol dehydrogenase from a novel strain of Bacillus stearothermophilus growing at 70 °C. Int J Biochem Cell Biol 28:239–246
    [Google Scholar]
  8. Hirakawa H., Kamiya N., Kawarabayashi Y., Nagamune T. 2004; Properties of an alcohol dehydrogenase from the hyperthermophilic archaeon Aeropyrum pernix K1. J Biosci Bioeng 97:202–206
    [Google Scholar]
  9. Hosaka T., Ui S., Ohtsuki T., Mimura A., Ohkuma M., Kudo T. 2001; Characterization of the NADH-linked acetylacetoin reductase/2,3-butanediol dehydrogenase gene from Bacillus cereus YUF-4. J Biosci Bioeng 91:539–544
    [Google Scholar]
  10. Hou C. T., Patel R. N., Laskin A. I., Barist I., Barnabe N. 1983; Thermostable NAD-linked secondary alcohol dehydrogenase from propane-grown Pseudomonas fluorescens NRRL B-1244. Appl Environ Microbiol 46:98–105
    [Google Scholar]
  11. Kazuoka T., Oikawa T., Muraoka I., Kuroda S., Soda K. 2007; A cold-active and thermostable alcohol dehydrogenase of a psychrotorelant from Antarctic seawater, Flavobacterium frigidimaris KUC-1. Extremophiles 11:257–267
    [Google Scholar]
  12. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  13. Lamed R., Zeikus J. G. 1980; Ethanol production by thermophilic bacteria: relationship between fermentation product yields of and catabolic enzyme activities in Clostridium thermocellum and Thermoanaerobium brockii . J Bacteriol 144:569–578
    [Google Scholar]
  14. Larroy C., Rosario Fernandez M., Gonzalez E., Pares X., Biosca J. A. 2003; Properties and functional significance of Saccharomyces cerevisiae ADHVI. Chem Biol Interact 143:144229–238
    [Google Scholar]
  15. Luers F., Seyfried M., Daniel R., Gottschalk G. 1997; Glycerol conversion to 1,3-propanediol by Clostridium pasteurianum : cloning and expression of the gene encoding 1,3-propanediol dehydrogenase. FEMS Microbiol Lett 154:337–345
    [Google Scholar]
  16. Ma K., Adams M. W. 1999; An unusual oxygen-sensitive, iron- and zinc-containing alcohol dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus . J Bacteriol 181:1163–1170
    [Google Scholar]
  17. Ma K., Robb F. T., Adams M. W. 1994; Purification and characterization of NADP-specific alcohol dehydrogenase and glutamate dehydrogenase from the hyperthermophilic archaeon Thermococcus litoralis . Appl Environ Microbiol 60:562–568
    [Google Scholar]
  18. Ma K., Loessner H., Heider J., Johnson M. K., Adams M. W. 1995; Effects of elemental sulfur on the metabolism of the deep-sea hyperthermophilic archaeon Thermococcus strain ES-1: characterization of a sulfur-regulated, non-heme iron alcohol dehydrogenase. J Bacteriol 177:4748–4756
    [Google Scholar]
  19. Montella C., Bellsolell L., Perez-Luque R., Badia J., Baldoma L., Coll M., Aguilar J. 2005; Crystal structure of an iron-dependent group III dehydrogenase that interconverts l-lactaldehyde and l-1,2-propanediol in Escherichia coli . J Bacteriol 187:4957–4966
    [Google Scholar]
  20. Neale A. D., Scopes R. K., Kelly J. M., Wettenhall R. E. 1986; The two alcohol dehydrogenases of Zymomonas mobilis . Purification by differential dye ligand chromatography, molecular characterisation and physiological roles. Eur J Biochem 154:119–124
    [Google Scholar]
  21. Pennacchio A., Pucci B., Secundo F., La Cara F., Rossi M., Raia C. A. 2008; Purification and characterization of a novel recombinant highly enantioselective short-chain NAD(H)-dependent alcohol dehydrogenase from Thermus thermophilus . Appl Environ Microbiol 74:3949–3958
    [Google Scholar]
  22. Radianingtyas H., Wright P. C. 2003; Alcohol dehydrogenases from thermophilic and hyperthermophilic archaea and bacteria. FEMS Microbiol Rev 27:593–616
    [Google Scholar]
  23. Reid M. F., Fewson C. A. 1994; Molecular characterization of microbial alcohol dehydrogenases. Crit Rev Microbiol 20:13–56
    [Google Scholar]
  24. Ruzheinikov S. N., Burke J., Sedelnikova S., Baker P. J., Taylor R., Bullough P. A., Muir N. M., Gore M. G., Rice D. W. 2001; Glycerol dehydrogenase: structure, specificity, and mechanism of a family III polyol dehydrogenase. Structure 9:789–802
    [Google Scholar]
  25. Schwarzenbacher R., von Delft F., Canaves J. M., Brinen L. S., Dai X., Deacon A. M., Elsliger M. A., Eshaghi S., Floyd R. other authors 2004; Crystal structure of an iron-containing 1,3-propanediol dehydrogenase (TM0920) from Thermotoga maritima at 1.3 Å resolution. Proteins 54:174–177
    [Google Scholar]
  26. Scopes R. K. 1983; An iron-activated alcohol dehydrogenase. FEBS Lett 156:303–306
    [Google Scholar]
  27. Scrutton N. S., Berry A., Perham R. N. 1990; Redesign of the coenzyme specificity of a dehydrogenase by protein engineering. Nature 343:38–43
    [Google Scholar]
  28. Singer M. E., Finnerty W. R. 1985; Alcohol dehydrogenases in Acinetobacter sp. strain HO1-N: role in hexadecane and hexadecanol metabolism. J Bacteriol 164:1017–1024
    [Google Scholar]
  29. Sulzenbacher G., Alvarez K., Van Den Heuvel R. H., Versluis C., Spinelli S., Campanacci V., Valencia C., Cambillau C., Eklund H., Tegoni M. 2004; Crystal structure of E. coli alcohol dehydrogenase YqhD: evidence of a covalently modified NADP coenzyme. J Mol Biol 342:489–502
    [Google Scholar]
  30. Tani A., Sakai Y., Ishige T., Kato N. 2000; Thermostable NADP+-dependent medium-chain alcohol dehydrogenase from Acinetobacter sp. strain M-1: purification and characterization and gene expression in Escherichia coli . Appl Environ Microbiol 66:5231–5235
    [Google Scholar]
  31. Tulchin N., Ornstein L., Davis B. J. 1976; A microgel system for disc electrophoresis. Anal Biochem 72:485–490
    [Google Scholar]
  32. Vangnai A. S., Arp D. J. 2001; An inducible 1-butanol dehydrogenase, a quinohaemoprotein, is involved in the oxidation of butane by ‘ Pseudomonas butanovora ’. Microbiology 147:745–756
    [Google Scholar]
  33. Vermeer C. P., Nastold P., Jetter R. 2003; Homologous very-long-chain 1,3-alkanediols and 3-hydroxyaldehydes in leaf cuticular waxes of Ricinus communis L. Phytochemistry 62:433–438
    [Google Scholar]
  34. Vonck J., Arfman N., De Vries G. E., Van Beeumen J., Van Bruggen E. F., Dijkhuizen L. 1991; Electron microscopic analysis and biochemical characterization of a novel methanol dehydrogenase from the thermotolerant Bacillus sp. C1. J Biol Chem 266:3949–3954
    [Google Scholar]
  35. Walter K. A., Bennett G. N., Papoutsakis E. T. 1992; Molecular characterization of two Clostridium acetobutylicum ATCC 824 butanol dehydrogenase isozyme genes. J Bacteriol 174:7149–7158
    [Google Scholar]
  36. Wang L., Tang Y., Wang S., Liu R. L., Liu M. Z., Zhang Y., Liang F. L., Feng L. 2006; Isolation and characterization of a novel thermophilic Bacillus strain degrading long-chain n-alkanes. Extremophiles 10:347–356
    [Google Scholar]
  37. Wentzel A., Ellingsen T. E., Kotlar H. K., Zotchev S. B., Throne-Holst M. 2007; Bacterial metabolism of long-chain n-alkanes. Appl Microbiol Biotechnol 76:1209–1221
    [Google Scholar]
  38. Wierenga R. K., De Maeyer M. C. H., Hol W. G. J. 1985; Interaction of pyrophosphate moieties with alpha-helixes in dinucleotide binding proteins. Biochemistry 24:1346–1357
    [Google Scholar]
  39. Ying X., Wang Y., Badiei H. R., Karanassios V., Ma K. 2007; Purification and characterization of an iron-containing alcohol dehydrogenase in extremely thermophilic bacterium Thermotoga hypogea . Arch Microbiol 187:499–510
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.027201-0
Loading
/content/journal/micro/10.1099/mic.0.027201-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed