1887

Abstract

Two alkyl alcohol dehydrogenase (ADH) genes from the long-chain alkane-degrading strain NG80-2 were characterized . ADH1 and ADH2 were prepared heterologously in as a homooctameric and a homodimeric protein, respectively. Both ADHs can oxidize a broad range of alkyl alcohols up to at least C, as well as 1,3-propanediol and acetaldehyde. ADH1 also oxidizes glycerol, and ADH2 oxidizes isopropyl alcohol, isoamylol, acetone, octanal and decanal. The best substrate is ethanol for ADH1 and 1-octanol for ADH2. For both ADHs, the optimum assay condition is at 60 °C and pH 8.0, and both NAD and NADP can be used as the cofactor. Sequence analysis reveals that ADH1 and ADH2 belong to the Fe-containing/activated long-chain ADHs. However, the two enzymes contain neither Fe nor other metals, and Fe is not required for the activity, suggesting a new type of ADH. The ADHs characterized here are potentially useful in crude oil bioremediation and other bioconversion processes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.027201-0
2009-06-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/6/2078.html?itemId=/content/journal/micro/10.1099/mic.0.027201-0&mimeType=html&fmt=ahah

References

  1. Antoine, E., Rolland, J. L., Raffin, J. P. & Dietrich, J. ( 1999; ). Cloning and over-expression in Escherichia coli of the gene encoding NADPH group III alcohol dehydrogenase from Thermococcus hydrothermalis. Eur J Biochem 264, 880–889.[CrossRef]
    [Google Scholar]
  2. Bairoch, A. ( 1992; ). PROSITE: a dictionary of sites and patterns in proteins. Nucleic Acids Res 20 (Suppl), 2013–2018.[CrossRef]
    [Google Scholar]
  3. Bakshi, E. N., Tse, P., Murray, K. S., Hanson, G. R., Scopes, R. K. & Wedd, A. G. ( 1989; ). Iron-activated alcohol dehydrogenase from Zymomonas mobilis: spectroscopic and magnetic properties. J Am Chem Soc 111, 8707–8713.[CrossRef]
    [Google Scholar]
  4. Bradford, M. M. ( 1976; ). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248–254.[CrossRef]
    [Google Scholar]
  5. Daniel, R., Boenigk, R. & Gottschalk, G. ( 1995; ). Purification of 1,3-propanediol dehydrogenase from Citrobacter freundii and cloning, sequencing, and overexpression of the corresponding gene in Escherichia coli. J Bacteriol 177, 2151–2156.
    [Google Scholar]
  6. Feng, L., Wang, W., Cheng, J., Ren, Y., Zhao, G., Gao, C., Tang, Y., Liu, X., Han, W. & other authors ( 2007; ). Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrificans NG80-2 isolated from a deep-subsurface oil reservoir. Proc Natl Acad Sci U S A 104, 5602–5607.[CrossRef]
    [Google Scholar]
  7. Guagliardi, A., Martino, M., Iaccarino, I., De Rosa, M., Rossi, M. & Bartolucci, S. ( 1996; ). Purification and characterization of the alcohol dehydrogenase from a novel strain of Bacillus stearothermophilus growing at 70 °C. Int J Biochem Cell Biol 28, 239–246.[CrossRef]
    [Google Scholar]
  8. Hirakawa, H., Kamiya, N., Kawarabayashi, Y. & Nagamune, T. ( 2004; ). Properties of an alcohol dehydrogenase from the hyperthermophilic archaeon Aeropyrum pernix K1. J Biosci Bioeng 97, 202–206.[CrossRef]
    [Google Scholar]
  9. Hosaka, T., Ui, S., Ohtsuki, T., Mimura, A., Ohkuma, M. & Kudo, T. ( 2001; ). Characterization of the NADH-linked acetylacetoin reductase/2,3-butanediol dehydrogenase gene from Bacillus cereus YUF-4. J Biosci Bioeng 91, 539–544.[CrossRef]
    [Google Scholar]
  10. Hou, C. T., Patel, R. N., Laskin, A. I., Barist, I. & Barnabe, N. ( 1983; ). Thermostable NAD-linked secondary alcohol dehydrogenase from propane-grown Pseudomonas fluorescens NRRL B-1244. Appl Environ Microbiol 46, 98–105.
    [Google Scholar]
  11. Kazuoka, T., Oikawa, T., Muraoka, I., Kuroda, S. & Soda, K. ( 2007; ). A cold-active and thermostable alcohol dehydrogenase of a psychrotorelant from Antarctic seawater, Flavobacterium frigidimaris KUC-1. Extremophiles 11, 257–267.[CrossRef]
    [Google Scholar]
  12. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.[CrossRef]
    [Google Scholar]
  13. Lamed, R. & Zeikus, J. G. ( 1980; ). Ethanol production by thermophilic bacteria: relationship between fermentation product yields of and catabolic enzyme activities in Clostridium thermocellum and Thermoanaerobium brockii. J Bacteriol 144, 569–578.
    [Google Scholar]
  14. Larroy, C., Rosario Fernandez, M., Gonzalez, E., Pares, X. & Biosca, J. A. ( 2003; ). Properties and functional significance of Saccharomyces cerevisiae ADHVI. Chem Biol Interact 143–144, 229–238.
    [Google Scholar]
  15. Luers, F., Seyfried, M., Daniel, R. & Gottschalk, G. ( 1997; ). Glycerol conversion to 1,3-propanediol by Clostridium pasteurianum: cloning and expression of the gene encoding 1,3-propanediol dehydrogenase. FEMS Microbiol Lett 154, 337–345.[CrossRef]
    [Google Scholar]
  16. Ma, K. & Adams, M. W. ( 1999; ). An unusual oxygen-sensitive, iron- and zinc-containing alcohol dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 181, 1163–1170.
    [Google Scholar]
  17. Ma, K., Robb, F. T. & Adams, M. W. ( 1994; ). Purification and characterization of NADP-specific alcohol dehydrogenase and glutamate dehydrogenase from the hyperthermophilic archaeon Thermococcus litoralis. Appl Environ Microbiol 60, 562–568.
    [Google Scholar]
  18. Ma, K., Loessner, H., Heider, J., Johnson, M. K. & Adams, M. W. ( 1995; ). Effects of elemental sulfur on the metabolism of the deep-sea hyperthermophilic archaeon Thermococcus strain ES-1: characterization of a sulfur-regulated, non-heme iron alcohol dehydrogenase. J Bacteriol 177, 4748–4756.
    [Google Scholar]
  19. Montella, C., Bellsolell, L., Perez-Luque, R., Badia, J., Baldoma, L., Coll, M. & Aguilar, J. ( 2005; ). Crystal structure of an iron-dependent group III dehydrogenase that interconverts l-lactaldehyde and l-1,2-propanediol in Escherichia coli. J Bacteriol 187, 4957–4966.[CrossRef]
    [Google Scholar]
  20. Neale, A. D., Scopes, R. K., Kelly, J. M. & Wettenhall, R. E. ( 1986; ). The two alcohol dehydrogenases of Zymomonas mobilis. Purification by differential dye ligand chromatography, molecular characterisation and physiological roles. Eur J Biochem 154, 119–124.[CrossRef]
    [Google Scholar]
  21. Pennacchio, A., Pucci, B., Secundo, F., La Cara, F., Rossi, M. & Raia, C. A. ( 2008; ). Purification and characterization of a novel recombinant highly enantioselective short-chain NAD(H)-dependent alcohol dehydrogenase from Thermus thermophilus. Appl Environ Microbiol 74, 3949–3958.[CrossRef]
    [Google Scholar]
  22. Radianingtyas, H. & Wright, P. C. ( 2003; ). Alcohol dehydrogenases from thermophilic and hyperthermophilic archaea and bacteria. FEMS Microbiol Rev 27, 593–616.[CrossRef]
    [Google Scholar]
  23. Reid, M. F. & Fewson, C. A. ( 1994; ). Molecular characterization of microbial alcohol dehydrogenases. Crit Rev Microbiol 20, 13–56.[CrossRef]
    [Google Scholar]
  24. Ruzheinikov, S. N., Burke, J., Sedelnikova, S., Baker, P. J., Taylor, R., Bullough, P. A., Muir, N. M., Gore, M. G. & Rice, D. W. ( 2001; ). Glycerol dehydrogenase: structure, specificity, and mechanism of a family III polyol dehydrogenase. Structure 9, 789–802.[CrossRef]
    [Google Scholar]
  25. Schwarzenbacher, R., von Delft, F., Canaves, J. M., Brinen, L. S., Dai, X., Deacon, A. M., Elsliger, M. A., Eshaghi, S., Floyd, R. & other authors ( 2004; ). Crystal structure of an iron-containing 1,3-propanediol dehydrogenase (TM0920) from Thermotoga maritima at 1.3 Å resolution. Proteins 54, 174–177.
    [Google Scholar]
  26. Scopes, R. K. ( 1983; ). An iron-activated alcohol dehydrogenase. FEBS Lett 156, 303–306.[CrossRef]
    [Google Scholar]
  27. Scrutton, N. S., Berry, A. & Perham, R. N. ( 1990; ). Redesign of the coenzyme specificity of a dehydrogenase by protein engineering. Nature 343, 38–43.[CrossRef]
    [Google Scholar]
  28. Singer, M. E. & Finnerty, W. R. ( 1985; ). Alcohol dehydrogenases in Acinetobacter sp. strain HO1-N: role in hexadecane and hexadecanol metabolism. J Bacteriol 164, 1017–1024.
    [Google Scholar]
  29. Sulzenbacher, G., Alvarez, K., Van Den Heuvel, R. H., Versluis, C., Spinelli, S., Campanacci, V., Valencia, C., Cambillau, C., Eklund, H. & Tegoni, M. ( 2004; ). Crystal structure of E. coli alcohol dehydrogenase YqhD: evidence of a covalently modified NADP coenzyme. J Mol Biol 342, 489–502.[CrossRef]
    [Google Scholar]
  30. Tani, A., Sakai, Y., Ishige, T. & Kato, N. ( 2000; ). Thermostable NADP+-dependent medium-chain alcohol dehydrogenase from Acinetobacter sp. strain M-1: purification and characterization and gene expression in Escherichia coli. Appl Environ Microbiol 66, 5231–5235.[CrossRef]
    [Google Scholar]
  31. Tulchin, N., Ornstein, L. & Davis, B. J. ( 1976; ). A microgel system for disc electrophoresis. Anal Biochem 72, 485–490.[CrossRef]
    [Google Scholar]
  32. Vangnai, A. S. & Arp, D. J. ( 2001; ). An inducible 1-butanol dehydrogenase, a quinohaemoprotein, is involved in the oxidation of butane by ‘Pseudomonas butanovora’. Microbiology 147, 745–756.
    [Google Scholar]
  33. Vermeer, C. P., Nastold, P. & Jetter, R. ( 2003; ). Homologous very-long-chain 1,3-alkanediols and 3-hydroxyaldehydes in leaf cuticular waxes of Ricinus communis L. Phytochemistry 62, 433–438.[CrossRef]
    [Google Scholar]
  34. Vonck, J., Arfman, N., De Vries, G. E., Van Beeumen, J., Van Bruggen, E. F. & Dijkhuizen, L. ( 1991; ). Electron microscopic analysis and biochemical characterization of a novel methanol dehydrogenase from the thermotolerant Bacillus sp. C1. J Biol Chem 266, 3949–3954.
    [Google Scholar]
  35. Walter, K. A., Bennett, G. N. & Papoutsakis, E. T. ( 1992; ). Molecular characterization of two Clostridium acetobutylicum ATCC 824 butanol dehydrogenase isozyme genes. J Bacteriol 174, 7149–7158.
    [Google Scholar]
  36. Wang, L., Tang, Y., Wang, S., Liu, R. L., Liu, M. Z., Zhang, Y., Liang, F. L. & Feng, L. ( 2006; ). Isolation and characterization of a novel thermophilic Bacillus strain degrading long-chain n-alkanes. Extremophiles 10, 347–356.[CrossRef]
    [Google Scholar]
  37. Wentzel, A., Ellingsen, T. E., Kotlar, H. K., Zotchev, S. B. & Throne-Holst, M. ( 2007; ). Bacterial metabolism of long-chain n-alkanes. Appl Microbiol Biotechnol 76, 1209–1221.[CrossRef]
    [Google Scholar]
  38. Wierenga, R. K., De Maeyer, M. C. H. & Hol, W. G. J. ( 1985; ). Interaction of pyrophosphate moieties with alpha-helixes in dinucleotide binding proteins. Biochemistry 24, 1346–1357.[CrossRef]
    [Google Scholar]
  39. Ying, X., Wang, Y., Badiei, H. R., Karanassios, V. & Ma, K. ( 2007; ). Purification and characterization of an iron-containing alcohol dehydrogenase in extremely thermophilic bacterium Thermotoga hypogea. Arch Microbiol 187, 499–510.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.027201-0
Loading
/content/journal/micro/10.1099/mic.0.027201-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error