Secretion and translocation signals and DspB/F-binding domains in the type III effector DspA/E of Free

Abstract

DspA/E is a type III effector of , the bacterial pathogen that causes fire blight disease in roseaceous plants. This effector is indispensable for disease development, and it is translocated into plant cells. A DspA/E-specific chaperone, DspB/F, is necessary for DspA/E secretion and possibly for its translocation. In this work, DspB/F-binding sites and secretion and translocation signals in the DspA/E protein were determined. Based on yeast two-hybrid assays, DspB/F was found to bind DspA/E within the first 210 amino acids of the protein. Surprisingly, both DspB/F and OrfA, the putative chaperone of Eop1, also interacted with the C-terminal 1059 amino acids of DspA/E; this suggests another chaperone-binding site. Secretion and translocation assays using serial N-terminal lengths of DspA/E fused with the active form of AvrRpt2 revealed that at least the first 109 amino acids, including the first N-terminal chaperone-binding motif and DspB/F, were required for efficient translocation of DspA/E, although the first 35 amino acids were sufficient for its secretion and the presence of DspB/F was not required. These results indicate that secretion and translocation signals are present in the N terminus of DspA/E, and that at least one DspB/F-binding motif is required for efficient translocation into plant cells.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.027144-0
2010-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/4/1211.html?itemId=/content/journal/micro/10.1099/mic.0.027144-0&mimeType=html&fmt=ahah

References

  1. Anderson D. M., Fouts D., Collmer A., Schneewind O. 1999; Reciprocal secretion of proteins by the bacterial type III machines of plant and animal pathogens suggests universal recognition of mRNA targeting signals. Proc Natl Acad Sci U S A 96:12839–12843
    [Google Scholar]
  2. Asselin J. E., Oh C.-S., Nissinen R. M., Beer S. V. 2006; The secretion of EopB from Erwinia amylovora. Acta Hortic 704:409–416
    [Google Scholar]
  3. Bocsanczy A. M., Nissinen R. M., Oh C.-S., Beer S. V. 2006; DspE, an effector of Erwinia amylovora is translocated into plant cells. Acta Hortic 704:467–472
    [Google Scholar]
  4. Bocsanczy A. M., Beer S. V., Perna N. T., Biehl B., Glasner J. D., Cartinhour S. W., Schneider D. J., DeClerck G. A., Sebaihia M. other authors 2008; Contributions of the genome sequence of Erwinia amylovora to the fire blight community. Acta Hortic 793:163–170
    [Google Scholar]
  5. Bogdanove A. J., Kim J. F., Wei Z., Kolchinsky P., Charkowski A. O., Conlin A. K., Collmer A., Beer S. V. 1998; Homology and functional similarity of an hrp-linked pathogenicity locus, dspEF, of Erwinia amylovora and the avirulence locus avrE of Pseudomonas syringae pathovar tomato. Proc Natl Acad Sci U S A 95:1325–1330
    [Google Scholar]
  6. Boureau T., Elmaarouf-Bouteau H., Garnier A., Brisset M. N., Perino C., Pucheu I., Barny M. A. 2006; DspA/E, a type III effector essential for Erwinia amylovora pathogenicity and growth in planta, induces cell death in host apple and nonhost tobacco plants. Mol Plant Microbe Interact 19:16–24
    [Google Scholar]
  7. Chang J. H., Urbach J. M., Law T. F., Arnold L. W., Hu A., Gombar S., Grant S. R., Ausubel F. M., Dangl J. L. 2005; A high-throughput, near-saturating screen for type III effector genes from Pseudomonas syringae. Proc Natl Acad Sci U S A 102:2549–2554
    [Google Scholar]
  8. DebRoy S., Thilmony R., Kwack Y. B., Nomura K., He S. Y. 2004; A family of conserved bacterial effectors inhibits salicylic acid-mediated basal immunity and promotes disease necrosis in plants. Proc Natl Acad Sci U S A 101:9927–9932
    [Google Scholar]
  9. Ehrbar K., Winnen B., Hardt W. D. 2006; The chaperone binding domain of SopE inhibits transport via flagellar and SPI-1 TTSS in the absence of InvB. Mol Microbiol 59:248–264
    [Google Scholar]
  10. Galán J. E., Wolf-Watz H. 2006; Protein delivery into eukaryotic cells by type III secretion machines. Nature 444:567–573
    [Google Scholar]
  11. Garr E. R. 2001 Towards the identification of an arabidopsis locus involved in the recognition of a disease-specific protein from Erwinia amylovora Master's thesis Cornell University;
  12. Gaudriault S., Malandrin L., Paulin J.-P., Barny M.-A. 1997; DspA, an essential pathogenicity factor of Erwinia amylovora showing homology with AvrE of Pseudomonas syringae, is secreted via the Hrp secretion pathway in a DspB-dependent way. Mol Microbiol 26:1057–1069
    [Google Scholar]
  13. Gaudriault S., Paulin J. P., Barny M. A. 2002; The DspB/F protein of Erwinia amylovora is a type III secretion chaperone ensuring efficient intrabacterial production of the Hrp-secreted DspA/E pathogenicity factor. Mol Plant Pathol 3:313–320
    [Google Scholar]
  14. Gietz R. D., Woods R. A. 2002; Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol 350:87–96
    [Google Scholar]
  15. Gravel P., Golaz O. 1996; Protein blotting by the semidry method. In The Protein Protocols Handbook pp 249–260 Edited by Walker J. M. Totowa, NJ: Humana Press;
    [Google Scholar]
  16. Guo M., Chancey S. T., Tian F., Ge Z., Jamir Y., Alfano J. R. 2005; Pseudomonas syringae type III chaperones ShcO1, ShcS1, and ShcS2 facilitate translocation of their cognate effectors and can substitute for each other in the secretion of HopO1–1. J Bacteriol 187:4257–4269
    [Google Scholar]
  17. Ham J. H., Bauer D. W., Fouts D. E., Collmer A. 1998; A cloned Erwinia chrysanthemi Hrp (type III protein secretion) system functions in Escherichia coli to deliver Pseudomonas syringae Avr signals to plant cells and to secrete Avr proteins in culture. Proc Natl Acad Sci U S A 95:10206–10211
    [Google Scholar]
  18. Lee S. H., Galán J. E. 2004; Salmonella type III secretion-associated chaperones confer secretion-pathway specificity. Mol Microbiol 51:483–495
    [Google Scholar]
  19. Letzelter M., Sorg I., Mota L. J., Meyer S., Stalder J., Feldman M., Kuhn M., Callebaut I., Cornelis G. R. 2006; The discovery of SycO highlights a new function for type III secretion effector chaperones. EMBO J 25:3223–3233
    [Google Scholar]
  20. Lilic M., Vujanac M., Stebbins C. E. 2006; A common structural motif in the binding of virulence factors to bacterial secretion chaperones. Mol Cell 21:653–664
    [Google Scholar]
  21. Lloyd S. A., Sjostrom M., Andersson S., Wolf-Watz H. 2002; Molecular characterization of type III secretion signals via analysis of synthetic N-terminal amino acid sequences. Mol Microbiol 43:51–59
    [Google Scholar]
  22. Luo Y., Bertero M. G., Frey E. A., Pfuetzner R. A., Wenk M. R., Creagh L., Marcus S. L., Lim D., Sicheri F. other authors 2001; Structural and biochemical characterization of the type III secretion chaperones CesT and SigE. Nat Struct Biol 8:1031–1036
    [Google Scholar]
  23. McNellis T. W., Mudgett M. B., Li K., Aoyama T., Horvath D., Chua N. H., Staskawicz B. J. 1998; Glucocorticoid-inducible expression of a bacterial avirulence gene in transgenic Arabidopsis induces hypersensitive cell death. Plant J 14:247–257
    [Google Scholar]
  24. Mudgett M. B., Staskawicz B. J. 1999; Characterization of the Pseudomonas syringae pv. tomato AvrRpt2 protein: demonstration of secretion and processing during bacterial pathogenesis. Mol Microbiol 32:927–941
    [Google Scholar]
  25. Mudgett M. B., Chesnokova O., Dahlbeck D., Clark E. T., Rossier O., Bonas U., Staskawicz B. J. 2000; Molecular signals required for type III secretion and translocation of the Xanthomonas campestris AvrBs2 protein to pepper plants. Proc Natl Acad Sci U S A 97:13324–13329
    [Google Scholar]
  26. Oh C.-S., Kim J. F., Beer S. V. 2005; The Hrp pathogenicity island of Erwinia amylovora and the identification of three novel genes required for systemic infection. Mol Plant Pathol 6:125–138
    [Google Scholar]
  27. Oh C.-S., Martin G. B., Beer S. V. 2007; DspA/E, a type III effector of Erwinia amylovora, is required for early rapid growth in Nicotiana benthamiana and causes NbSGT1-dependent cell death. Mol Plant Pathol 8:255–265
    [Google Scholar]
  28. Petnicki-Ocwieja T., Schneider D. J., Tam V. C., Chancey S. T., Shan L., Jamir Y., Schechter L. M., Janes M. D., Buell C. R. other authors 2002; Genomewide identification of proteins secreted by the Hrp type III protein secretion system of Pseudomonas syringae pv. tomato DC3000. Proc Natl Acad Sci U S A 99:7652–7657
    [Google Scholar]
  29. Ramamurthi K. S., Schneewind O. 2003; Substrate recognition by the Yersinia type III protein secretion machinery. Mol Microbiol 50:1095–1102
    [Google Scholar]
  30. Sambrook J., Fritsch E. F., Maniatis T. E. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  31. Schesser K., Frithz-Lindstein E., Wolf-Watz H. 1996; Delineation and mutational analysis of the Yersinia pseudotuberculosis YopE domains which mediate translocation across bacterial and eukaryotic cellular membranes. J Bacteriol 178:7227–7233
    [Google Scholar]
  32. Sorg J. A., Miller N. C., Schneewind O. 2005; Substrate recognition of type III secretion machines – testing the RNA signal hypothesis. Cell Microbiol 7:1217–1225
    [Google Scholar]
  33. Stebbins C. E. 2005; Structural microbiology at the pathogen–host interface. Cell Microbiol 7:1227–1236
    [Google Scholar]
  34. Stebbins C. E., Galán J. E. 2001; Maintenance of an unfolded polypeptide by a cognate chaperone in bacterial type III secretion. Nature 414:77–81
    [Google Scholar]
  35. Triplett L. R., Melotto M., Sundin G. W. 2009; Functional analysis of the N terminus of the Erwinia amylovora secreted effector DspA/E reveals features required for secretion, translocation, and binding to the chaperone DspB/F. Mol Plant Microbe Interact 22:1282–1292
    [Google Scholar]
  36. van Eerde A., Hamiaux C., Perez J., Parsot C., Dijkstra B. W. 2004; Structure of Spa15, a type III secretion chaperone from Shigella flexneri with broad specificity. EMBO Rep 5:477–483
    [Google Scholar]
  37. Zwiesler-Vollick J., Plovanich-Jones A. E., Nomura K., Bandyopadhyay S., Joardar V., Kunkel B. N., He S. Y. 2002; Identification of novel hrp-regulated genes through functional genomic analysis of the Pseudomonas syringae pv. tomato DC3000 genome. Mol Microbiol 45:1207–1218
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.027144-0
Loading
/content/journal/micro/10.1099/mic.0.027144-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed