1887

Abstract

The operons constitute four homologous regions in the genome, each of which has 8–13 ORFs. Although the function of the Mce protein family has not been clearly established, its members are believed to be membrane lipid transporters. Based on functional experiments, we found that the regulator of the locus, Mce3R, negatively regulates the expression of the and transcriptional units. These operons are adjacent to one another and divergently transcribed. The predicted functions of most of these genes are related to either lipid metabolism or redox reactions. Bioinformatic analysis of the 5′ UTR sequences of the differentially expressed genes allowed us to define a putative Mce3R motif. Importantly, the Mce3R motif was present six and three times in the and intergenic regions, respectively. Two occurrences of this motif mapped within the two regions of the operon that were protected by Mce3R in a footprinting analysis, thus indicating that this motif is likely to serve as an operator site for the Mce3R regulator in the promoter. In addition, alterations in the lipid content of were detected in the absence of Mce3R. Taken together, these results suggest that Mce3R controls the expression of both the putative transport system encoded in the operon and the enzymes implicated in the modification of the Mce3-transported substrates.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.027086-0
2009-07-01
2020-07-04
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/7/2245.html?itemId=/content/journal/micro/10.1099/mic.0.027086-0&mimeType=html&fmt=ahah

References

  1. Arruda S., Bonfim G., Knights R., Huima-Byron T., Riley L. W.. 1993; Cloning of an M. tuberculosis DNA fragment associated with entry and survival inside cells. Science261:1454–1457
    [Google Scholar]
  2. Bailey T. L., Elkan C.. 1994; Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol2:28–36
    [Google Scholar]
  3. Bailey T. L., Gribskov M.. 1998; Combining evidence using p-values: application to sequence homology searches. Bioinformatics14:48–54
    [Google Scholar]
  4. Bienvenut W. V., Sanchez J. C., Karmime A., Rougue V., Rose K., Binz P. A., Hochstrasser D. F.. 1999; Toward a clinical molecular scanner for proteome research: parallel protein chemical processing before and during Western blot. Anal Chem71:4800–4807
    [Google Scholar]
  5. Bigi F., Espitia C., Alito A., Zumarraga M., Cravero S., Cataldi A.. 1997; A novel 27 kDa lipoprotein antigen from Mycobacterium bovis. Microbiology143:3599–3605
    [Google Scholar]
  6. Biswal B. K., Garen G., Cherney M. M., Garen C., James M. N. G.. 2006; Cloning, expression, purification, crystallization and preliminary X-ray studies of epoxide hydrolases A and B from Mycobacterium tuberculosis. Acta Crystallogr Sect F Struct Biol Cryst Commun62:136–138
    [Google Scholar]
  7. Bligh E. G., Dyer W. J.. 1959; A rapid method of total lipid extraction and purification. Can J Biochem Physiol37:911–917
    [Google Scholar]
  8. Blum H., Beier H., Gross H. J.. 1987; Improved silver staining of plant-proteins, RNA and DNA in polyacrilamide gels. Electrophoresis8:93–99
    [Google Scholar]
  9. Casali N., Riley L. W.. 2007; A phylogenomic analysis of the Actinomycetales mce operons. BMC Genomics8:60
    [Google Scholar]
  10. Casali N., White A. M., Riley L. W.. 2006; Regulation of the Mycobacterium tuberculosis mce1 operon. J Bacteriol188:441–449
    [Google Scholar]
  11. Cole S. T., Brosch R., Parkhill J., Garnier T., Churcher C., Harris D., Gordon S. V., Eiglmeier K., Gas S.. other authors 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature393:537–544
    [Google Scholar]
  12. El-Etr S. H., Subbian S., Cirillo S. L., Cirillo J. D.. 2004; Identification of two Mycobacterium marinum loci that affect interactions with macrophages. Infect Immun72:6902–6913
    [Google Scholar]
  13. Gioffré A., Infante E., Aguilar D., Santangelo M. P., Klepp L., Amadio A., Meikle V., Etchechoury I., Romano M. I.. other authors 2005; Mutation in mce operons attenuates Mycobacterium tuberculosis virulence. Microbes Infect7:325–334
    [Google Scholar]
  14. Golby P., Hatch K. A., Bacon J., Cooney R., Riley P., Allnutt J., Hinds J., Nunez J., Marsh P. D.. other authors 2007; Comparative transcriptomics reveals key gene expression differences between the human and bovine pathogens of the Mycobacterium tuberculosis complex. Microbiology153:3323–3336
    [Google Scholar]
  15. Gu S., Chen J., Dobos K. M., Bradbury E. M., Belisle J. T., Chen X.. 2003; Comprehensive proteomic profiling of the membrane constituents of a Mycobacterium tuberculosis strain. Mol Cell Proteomics2:1284–1296
    [Google Scholar]
  16. Jacques P.-É., Gervais A. L., Cantin M., Lucier J.-F., Dallaire G., Drouin G., Gaudreau L., Goulet J., Brzezinski R.. 2005; MtbRegList, a database dedicated to the analysis of transcriptional regulation in Mycobacterium tuberculosis. Bioinformatics21:2563–2565
    [Google Scholar]
  17. Joshi S. M., Pandey A. K., Capite N., Fortune S. M., Rubin E. J., Sassetti C. M.. 2006; Characterization of mycobacterial virulence genes through genetic interaction mapping. Proc Natl Acad Sci U S A103:11760–11765
    [Google Scholar]
  18. Kendall S. L., Withers M., Soffair C. N., Moreland N. J., Gurcha S., Sidders B., Frita R., Ten Bokum A., Besra G. S.. other authors 2007; A highly conserved transcriptional repressor controls a large regulon involved in lipid degradation in Mycobacterium smegmatis and Mycobacterium tuberculosis. Mol Microbiol65:684–699
    [Google Scholar]
  19. Kumar A., Bose M., Brahmachari V.. 2003; Analysis of expression profile of mammalian cell entry ( mce) operons of Mycobacterium tuberculosis. Infect Immun71:6083–6087
    [Google Scholar]
  20. Kumar A., Chandolia A., Chaudry U., Brahmachari V., Bose M.. 2005; Comparison of mammalian cell entry operons of mycobacteria: in silico analysis and expression profiling. FEMS Immunol Med Microbiol43:185–195
    [Google Scholar]
  21. Muñoz-Elías E. J., McKinney J. D.. 2006; Carbon metabolism of intracellular bacteria. Cell Microbiol8:10–22
    [Google Scholar]
  22. Pandey D. P., Gerdes K.. 2005; Toxin–antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes. Nucleic Acids Res33:966–976
    [Google Scholar]
  23. Pandey A. K., Sassetti C. M.. 2008; Mycobacterial persistence requires the utilization of host cholesterol. Proc Natl Acad Sci U S A105:4376–4380
    [Google Scholar]
  24. Pfaffl M. W., Horgan G. W., Dempfle L.. 2002; Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res30:e36
    [Google Scholar]
  25. Rosas-Magallanes V., Stadthagen-Gomez G., Rauzier J., Barreiro L. B., Tailleux L., Boudou F., Griffin R., Nigou J., Jackson M.. other authors 2007; Signature-tagged transposon mutagenesis identifies novel Mycobacterium tuberculosis genes involved in the parasitism of human macrophages. Infect Immun75:504–507
    [Google Scholar]
  26. Santangelo M. P., Goldstein J., Alito A., Gioffre A., Caimi K., Zabal O., Zumárraga M., Romano M. I., Cataldi A. A., Bigi F.. 2002; Negative transcriptional regulation of the mce3 operon in Mycobacterium tuberculosis. Microbiology148:2997–3006
    [Google Scholar]
  27. Santangelo M. P., Blanco F. C., Bianco M. V., Klepp L. I., Zabal O., Cataldi A. A., Bigi F.. 2008; Study of the role of Mce3R on the transcription of mce genes of Mycobacterium tuberculosis. BMC Microbiol8:38
    [Google Scholar]
  28. Sassetti C. M., Rubin E. J.. 2003; Genetic requirements for mycobacterial survival during infection. Proc Natl Acad Sci U S A100:12989–12994
    [Google Scholar]
  29. Shimono N., Morici L., Casali N., Cantrell S., Sidders B., Ehrt S., Riley L. W.. 2003; Hypervirulent mutant of Mycobacterium tuberculosis resulting from disruption of the mce1 operon. Proc Natl Acad Sci U S A100:15918–15923
    [Google Scholar]
  30. Van der Geize R., Yam K., Heuser T., Wilbrink M. H., Hara H., Anderton M. C., Sim E., Dijkhuizen L., Davies J. E.. other authors 2007; A gene cluster encoding cholesterol catabolism in a soil actinomycete provides insight into Mycobacterium tuberculosis survival in macrophages. Proc Natl Acad Sci U S A104:1947–1952
    [Google Scholar]
  31. van Soolingen D., Hermans P. W. M., de Haas P. E. W., Soll D. R., van Embden J. D. A.. 1991; Occurrence and stability of insertion sequences in Mycobacterium tuberculosis complex strains: evaluation of an insertion sequence-dependent DNA polymorphism as a tool in the epidemiology of tuberculosis. J Clin Microbiol29:2578–2586
    [Google Scholar]
  32. Wheeler P. R., Ratledge C.. 1994; Metabolism of Mycobacterium tuberculosis. In Tuberculosis: Pathogenesis, Protection, and Control pp353–385 Edited by Bloom B. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  33. Wheeler P. R., Brosch R., Coldham N. G., Inwald J. K., Hewinson R. G., Gordon S. V.. 2008; Functional analysis of a clonal deletion in an epidemic strain of Mycobacterium bovis reveals a role in lipid metabolism. Microbiology154:3731–3742
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.027086-0
Loading
/content/journal/micro/10.1099/mic.0.027086-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error