1887

Abstract

The growth pattern of KT2440 in the presence of glucose and phenylacetic acid (PAA), where the sugar is used in preference to the aromatic compound, suggests that there is carbon catabolite repression (CCR) of PAA metabolism by glucose or gluconate. Furthermore, CCR is regulated at the transcriptional level. However, this CCR phenomenon does not occur in PAA-amended minimal medium containing fructose, pyruvate or succinate. We previously identified 2-keto-3-deoxy-6-phosphogluconate (KDPG) as an inducer of glucose metabolism, and this has led to this investigation into the role of KDPG as a signal compound for CCR. Two mutant strains, the mutant (non-KDPG producer) and the mutant (KDPG overproducer), grew in the presence of PAA but not in the presence of glucose. The mutant utilized PAA even in the presence of glucose, indicating that CCR had been abolished. This observation has additional support from the finding that there is high phenylacetyl-CoA ligase activity in the mutant, even in the presence of glucose+PAA, but not in wild-type cells under the same conditions. Unlike the mutant, the mutant did not grow in the presence of glucose+PAA. Interestingly, there was no uptake and/or metabolism of PAA in the mutant cells under the same conditions. Targeted disruption of PaaX, a repressor of the PAA operon, had no effect on CCR of PAA metabolism in the presence of glucose, suggesting that there is another transcriptional repression system associated with the KDPG signal. This is the first study to demonstrate that KDPG is the true CCR signal of PAA metabolism in KT2440.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.027060-0
2009-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/7/2420.html?itemId=/content/journal/micro/10.1099/mic.0.027060-0&mimeType=html&fmt=ahah

References

  1. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Sruthl K. 1999 Current Protocols in Molecular Biology New York: Wiley;
    [Google Scholar]
  2. Bartolomé-Martín D., Martínez-García E., Mascaraque V., Rubio J., Perera J., Alonso S. 2004; Characterization of a second functional gene cluster for the catabolism of phenylacetic acid in Pseudomonas sp. strain Y2. Gene 341:167–179
    [Google Scholar]
  3. Basu A., Shrivastava R., Basu B., Apte S. K., Phale P. S. 2007; Modulation of glucose transport causes preference utilization of aromatic compounds in Pseudomonas putida CSV86. J Bacteriol 189:7556–7562
    [Google Scholar]
  4. del Castillo T., Ramos J. L. 2007; Simultaneous catabolic repression between glucose and toluene metabolism in Pseudomonas putida is channeled through different signaling pathways. J Bacteriol 189:6602–6610
    [Google Scholar]
  5. del Castillo T., Ramos J. L., Rodríguez-Herva J. J., Fuhrer T., Sauer U., Duque E. 2007; Convergent peripheral pathways catalyze initial glucose catabolism in Pseudomonas putida: genomic and flux analysis. J Bacteriol 189:5142–5152
    [Google Scholar]
  6. del Peso-Santos T., Bartolomé-Martín D., Fernández C., Alonso S., García J. L., Díaz E., Shingler V., Perera J. 2006; Coregulation by phenylacetyl-Coenzyme A-responsive PaaX integrates control of the upper and lower pathways for catabolism of styrene by Pseudomonas sp. strain Y2. J Bacteriol 188:4812–4821
    [Google Scholar]
  7. del Peso-Santos T., Shingler V., Perera J. 2008; The styrene-responsive StyS/StyR regulation system controls expression of an auxiliary phenylacetyl-coenzyme A ligase: implications for rapid metabolic coupling of the styrene upper- and lower-degradative pathways. Mol Microbiol 69:317–330
    [Google Scholar]
  8. Di Gennaro P., Ferrara S., Ronco I., Galli E., Sello G., Papacchini M., Bestetti G. 2007; Styrene lower catabolic pathway in Pseudomonas fluorescens ST: identification and characterization of genes for phenylacetic acid degradation. Arch Microbiol 188:117–125
    [Google Scholar]
  9. Duque E., Molina-Henares A. J., de la Torre J., Molina-Henares M. A., del Castillo T., Lam J., Ramos J. L. 2007; Towards a genome-wide mutant library of Pseudomonas putida strains KT2440. In Pseudomonas vol. V, chapter 8 pp 227–251 Edited by Ramos J. L., Filoux A. The Netherlands: Springer;
    [Google Scholar]
  10. Ferrández A., Miñambres B., García B., Olivera E. R., Luengo J. M., García J. L., Díaz E. 1998; Catabolism of phenylacetic acid in Escherichia coli . J Biol Chem 273:25974–25986
    [Google Scholar]
  11. Ferrández A., García J. L., Díaz E. 2000; Transcriptional regulation of the divergent paa catabolic operons for phenylacetic acid degradation in Escherichia coli . J Biol Chem 275:12214–12222
    [Google Scholar]
  12. Fredrickson J. K., Bezdicek D. F., Brockman F. J., Li S. W. 1988; Enumeration of Tn 5 mutant bacteria in soil by using a most-probable number-DNA hybridization procedure and antibiotic resistance. Appl Environ Microbiol 54:446–453
    [Google Scholar]
  13. Galán B., García J. L., Prieto M. A. 2004; The PaaX repressor, a link between penicillin G acylase and the phenylacetyl-coenzyme A catabolon of Escherichia coli W. J Bacteriol 186:2215–2220
    [Google Scholar]
  14. García B., Olivera E. R., Miñambres B., Carnicero D., Muñiz C., Naharro G., Luengo J. M. 2000; Phenylacetyl-Coenzyme A is the true inducer of the phenylacetic acid catabolism pathway in Pseudomonas putida U. Appl Environ Microbiol 66:4575–4578
    [Google Scholar]
  15. Hager P. W., Calfee M. W., Phibbs P. V. 2000; The Pseudomonas aeruginosa devB/SOL homolog, pgl, is a member of the hex regulon and encodes 6-phosphogluconolactonase. J Bacteriol 182:3934–3941
    [Google Scholar]
  16. Holtel A., Marques S., Mohler I., Jakubzik U., Timmis K. N. 1994; Carbon source-dependent inhibition of xyl operon expression of the Pseudomonas putida TOL plasmid. J Bacteriol 176:1773–1776
    [Google Scholar]
  17. Jiménez J. I., Miñambres B., García J. L., Díaz E. 2002; Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida KT2440. Environ Microbiol 4:824–841
    [Google Scholar]
  18. Kalogeraki V. S., Winans S. C. 1997; Suicide plasmids containing promoterless reporter genes can simultaneously disrupt and create fusions to genes of diverse bacteria. Gene 188:69–75
    [Google Scholar]
  19. Keston A. S. 1956; Specific colorimetric enzymatic analytical reagents for glucose. In Abstracts of the 129th Meeting of the American Chemical Society Dallas, TX: pp 310–314
    [Google Scholar]
  20. Kim H. S., Kang T. S., Hyun J. S., Kang H. S. 2004; Regulation of penicillin G acylase gene expression in Escherichia coli by repressor PaaX and the cAMP–cAMP receptor protein complex. J Biol Chem 279:33253–33262
    [Google Scholar]
  21. Kim J., Jeon C. O., Park W. 2007; A green fluorescent protein-based whole-cell bioreporter for the detection of phenylacetic acid. J Microbiol Biotechnol 17:1727–1732
    [Google Scholar]
  22. Kim J., Jeon C. O., Park W. 2008; Dual regulation of zwf-1 by both 2-keto-3-deoxy-6-phosphogluconate and oxidative stress in Pseudomonas putida . Microbiology 154:3905–3916
    [Google Scholar]
  23. Kimata K., Takahashi H., Inada T., Postma P., Aiba H. 1997; cAMP receptor protein-cAMP plays a crucial role in glucose-lactose diauxie by activating the major glucose transporter gene in Escherichia coli . Proc Natl Acad Sci U S A 94:12914–12919
    [Google Scholar]
  24. Lee Y., Ahn E., Park S., Madsen E. L., Jeon C. O., Park W. 2006; Construction of a reporter strain Pseudomonas putida for the detection of oxidative stress caused by environmental pollutants. J Microbiol Biotechnol 16:386–390
    [Google Scholar]
  25. Luengo J. M., García J. L., Olivera E. R. 2001; The phenylacetyl-CoA catabolon: a complex catabolic unit with broad biotechnological application. Mol Microbiol 39:1434–1442
    [Google Scholar]
  26. Martínez-Blanco H., Reglero A., Rodriguez-Aparicio L. B., Luengo J. M. 1990; Purification and biochemical characterization of phenylacetyl-CoA ligase from Pseudomonas putida. A specific enzyme for the catabolism of phenylacetic acid. J Biol Chem 265:7084–7090
    [Google Scholar]
  27. Morales G., Linares J. F., Beloso A., Albar J. P., Martínez J. L., Rojo F. 2004; The Pseudomonas putida crc global regulator controls the expression of genes from several chromosomal catabolic pathways for aromatic compounds. J Bacteriol 186:1337–1344
    [Google Scholar]
  28. Moreno R., Rojo F. 2008; The target for the Pseudomonas putida Crc global regulator in the benzoate degradation pathway is the BenR transcriptional regulator. J Bacteriol 190:1539–1545
    [Google Scholar]
  29. Nichols N. N., Harwood C. 1995; Repression of 4-hydroxybenzoate transport and degradation by benzoate: a new layer of regulatory control in the Pseudomonas putida β-ketoadipate pathway. J Bacteriol 177:7033–7040
    [Google Scholar]
  30. Notley-McRobb L., Death A., Ferenci T. 1997; The relationship between external glucose concentration and cAMP levels inside Escherichia coli: implications for models of phosphotransferase-mediated regulation of adenylate cyclase. Microbiology 143:1909–1918
    [Google Scholar]
  31. Olivera E. R., Miñambres B., García B., Muñiz C., Moreno M. A., Ferrández A., Díaz E., García J. L., Luengo J. M. 1998; Molecular characterization of the phenylacetic acid catabolic pathway in Pseudomonas putida U: the phenylacetyl-CoA catabolon. Proc Natl Acad Sci U S A 95:6419–6424
    [Google Scholar]
  32. Park W., Jeon C. O., Hohnstock-Ashe A. M., Wnas S. C., Zylstra G. J., Madsen E. L. 2003; Identification and characterization of the conjugal transfer region of the pCg1 plasmid from naphthalene-degrading Pseudomonas putida Cg1. Appl Environ Microbiol 69:3263–3271
    [Google Scholar]
  33. Petruschka L., Adolf K., Burchhardt G., Dernedde J., Jürgensen J., Herrmann H. 2002; Analysis of the zwf-pgl-eda-operon in Pseudomonas putida strains H and KT2440. FEMS Microbiol Lett 215:89–95
    [Google Scholar]
  34. Putrinš M., Tover A., Tegova R., Saks Ü., Kivisaar M. 2007; Study of factors which negatively affect expression of the phenol degradation operon pheBA in Pseudomonas putida . Microbiology 153:1860–1871
    [Google Scholar]
  35. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  36. Sawyer M. H., Baumann L., Berman S. M., Canovas J. L., Berman R. H. 1977; Pathways of d-fructose catabolism in species of Pseudomonas . Arch Microbiol 112:49–55
    [Google Scholar]
  37. Schleissner C., Olivera E. R., Fernandez-Valverde M., Luengo J. M. 1994; Aerobic catabolism of phenylacetic acid in Pseudomonas putida U: biochemical characterization of a specific phenylacetic acid transport system and formal demonstration that phenylacetyl-coenzyme A is a catabolic intermediate. J Bacteriol 176:7667–7676
    [Google Scholar]
  38. Siegel L. S., Hylemon P. B., Phibbs P. V. 1977; Cyclic adenosine 3′,5′-monophosphate levels and activities of adenylate cyclase and cyclic adenosine 3′,5′-monophosphate phosphodiesterase in Pseudomonas and Bacteroides . J Bacteriol 129:87–96
    [Google Scholar]
  39. Simon R., Priefer U., Puehler A. 1983; A broad host range mobilization system in Gram-negative bacteria. Biotechnology (N Y) 1:784–791
    [Google Scholar]
  40. Temple L., Sage A., Christie G. E., Phibbs P. V. 1994; Two genes for carbohydrate catabolism are divergently transcribed from a region of DNA containing the hexC locus in Pseudomonas aeruginosa PAO1. J Bacteriol 176:4700–4709
    [Google Scholar]
  41. Velázquez F., di Bartolo I., de Lorenzo V. 2004; Genetic evidence that catabolites of the Entner–Doudoroff pathway signal C sources repression of the σ 54 Pu promoter of Pseudomonas putida . J Bacteriol 186:8267–8275
    [Google Scholar]
  42. Vicente M., Canovas J. L. 1973; Regulation of the glucolytic enzymes in Pseudomonas putida . Arch Mikrobiol 93:53–64
    [Google Scholar]
  43. Yin S., Fuanthong M., Laratta W. P., Shapleigh J. P. 2003; Use of a green fluorescent protein-based reporter fusion for detection of nitric oxide produced by denitrifiers. Appl Environ Microbiol 69:3938–3944
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.027060-0
Loading
/content/journal/micro/10.1099/mic.0.027060-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error