Carbohydrate-binding properties of a separately folding protein module from -1,3-glucanase Lic16A of Free

Abstract

The multi-modular non-cellulosomal endo-1,3(4)--glucanase Lic16A from contains a so-called X module (denoted as CBMX) near the N terminus of the catalytic module (191–426 aa). Melting of X-module-containing recombinant proteins revealed an independent folding of the module. CBMX was isolated and studied as a separate fragment. It was shown to bind to various insoluble polysaccharides, including xylan, pustulan, chitin, chitosan, yeast cell wall glucan, Avicel and bacterial crystalline cellulose. CBMX thus contains a hitherto unknown carbohydrate-binding module (CBM54). It did not bind soluble polysaccharides on which Lic16A is highly active. Ca ions had effects on the binding, e.g. stimulated complex formation with chitosan, which was observed only in the presence of Ca. The highest affinity to CBMX was shown for xylan (binding constant =3.1×10 M), yeast cell wall glucan (=1.4×10 M) and chitin (=3.3.10 M in the presence of Ca). Lic16A deletion derivatives lacking CBMX had lower affinity to lichenan and laminarin and a slight decrease in optimum temperature and thermostability. However, the specific activity was not significantly affected.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.026930-0
2009-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/7/2442.html?itemId=/content/journal/micro/10.1099/mic.0.026930-0&mimeType=html&fmt=ahah

References

  1. Bacon J. S. D., Farmer V. C., Jones D., Taylor I. F. 1969; The glucan components of the cell wall of baker's yeast ( Saccharomyces cerevisiae) considered in relation to its ultra-structure. Biochem J 114:557–567
    [Google Scholar]
  2. Bayer E. A., Lamed R. 1986; Ultrastructure of the cell surface cellulosome of Clostridium thermocellum . J Bacteriol 167:828–836
    [Google Scholar]
  3. Bayer E. A., Shoham Y., Lamed R. 2000; Cellulose decomposing prokaryotes and their enzyme systems. . In The Prokaryotes: an Evolving Electronic Resource For The Microbiological Community pp 234–315 Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E. New York: Springer-Verlag;
    [Google Scholar]
  4. Belaich J. P., Tardif C., Belaich A., Gaudin C. 1997; The cellulolytic system of Clostridium cellulolyticum . J Biotechnol 57:3–14
    [Google Scholar]
  5. Berger E., Zhang D., Zverlov V. V., Schwarz W. H. 2007; Two noncellulosomal cellulases of Clostridium thermocellum, Cel9I and Cel48Y, hydrolyse crystalline cellulose synergistically. FEMS Microbiol Lett 268:194–201
    [Google Scholar]
  6. Bolam D. N., Hefang X., Pell G., Hogg D., Galbraith G., Henrissat B., Gilbert H. J. 2004; X4 modules represent a new family of carbohydrate-binding modules that display novel properties. J Biol Chem 279:22953–22963
    [Google Scholar]
  7. Boraston A. B., McLean B. W., Kormos J. M., Alam M., Gilkes N. R., Haynes C. A., Tomme P., Kilburn D. G., Warren R. A. 1999; Carbohydrate-binding modules: diversity of structure and function. Recent Advances In Carbohydrate Bioengineering pp 202–211 Edited by Gilbert H. J., Henrissat B., Svensson B. Cambridge: Royal Society of Chemistry;
    [Google Scholar]
  8. Boraston A. B., Bolam D. N., Gilbert H. J., Davies G. J. 2004; Carbohydrate-binding modules: fine tuning polysaccharide recognition. Biochem J 382:769–781
    [Google Scholar]
  9. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
    [Google Scholar]
  10. Branden K., Tooze J. 1999 Introduction to Protein Structure , 2nd edn. New York: Garland Publishing;
    [Google Scholar]
  11. Cantarel B. L., Coutinho P. M., Rancurel C., Bernard T., Lombard V., Henrissat B. 2009; The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37: (Database issue), D233–D238. Epub 2008 Oct 5
    [Google Scholar]
  12. Carrard G., Koivula A., Soderlund H., Beguin P. 2000; Cellulose binding domains promote hydrolysis of different sites on crystalline cellulose. Proc Natl Acad Sci U S A 97:10342–10347
    [Google Scholar]
  13. Carvalho A. L., Goyal A., Prates J. A. M., Bolam D. N., Hilbert H. J., Pires V. M. R., Ferreira L. M. A., Planas A., Romao M. J., Fontes C. M. G. A. 2004; The family 11 carbohydrate-binding module of Clostridium thermocellum Lic26A-Cel5E accommodates β-1,3- and β-1,3–1,4-mixed linked glucans at a single binding site. J Biol Chem 279:34785–34793
    [Google Scholar]
  14. Chauvaux S., Souchon H., Alzari P. M., Chariot P., Beguin P. 1995; Structural and functional analysis of the metal-binding sites of Clostridium thermocellum endoglucanase CelD. J Biol Chem 270:9757–9762
    [Google Scholar]
  15. Chuvil'skaya N. A., Golovchenko N. P., Belokopytov B. F., Akimenko V. K. 1986; Isolation, identification and some physiological properties of Clostridium thermocellum . Prikl Biokhim Mikrobiol 22:800–805
    [Google Scholar]
  16. Coutinho P. M., Henrissat B. 1999; The modular structure of cellulases and other carbohydrate-active enzymes: an integrated database approach. In Genetics, Biochemistry and Ecology of Cellulose Degradation pp 15–23 Edited by Ohmiya K., Hayashi K., Sakka K., Kobayashi Y., Karita S., Kimura T. Tokyo: Uni Publishers Co;
    [Google Scholar]
  17. Dobson C. M., Evans P. A., Radsford S. E. 1994; Understanding protein folding: the lysozyme story so far. Trends Biochem Sci 19:31–37
    [Google Scholar]
  18. Ezer A., Matalon E., Jindou S., Borovok I., Atamna N., Yu Z., Morrison M., Bayer E. A., Lamed R. 2008; Cell-surface enzyme attachment is mediated by family-37 carbohydrate-binding modules, unique to Ruminococcus albus . J Bacteriol 190:8220–8222
    [Google Scholar]
  19. Finkelstein A. V., Ptytsin O. B. 2005 The Physics of Protein Moscow: Knizny Dom University;
    [Google Scholar]
  20. Fuchs K. P., Zverlov V. V., Velikodvorskaya G. A., Lottspeich F., Schwarz W. H. 2003; Lic16A of Clostridium thermocellum, a non-cellulosomal, highly complex endo- β-1,3-glucanase bound to the outer cell surface. Microbiology 149:1021–1031
    [Google Scholar]
  21. Gilkes N. R., Henrissat B., Kilburn D. G., Miller R. C., Warren R. A. 1991; Domains in microbial beta-1, 4-glycanases: sequence conservation, function, and enzyme families. Microbiol Rev 55:303–315
    [Google Scholar]
  22. Grepinet O., Chebrou M. C., Beguin P. 1988; Nucleotide sequence and deletion analysis of the xylanase gene ( xynZ) of Clostridium thermocellum . J Bacteriol 170:4582–4588
    [Google Scholar]
  23. Hong T. Y., Meng M. 2003; Biochemical characterization and antifungal activity of an endo-1,3- β-glucanase of Paenibacillus sp. isolated from garden soil. Appl Microbiol Biotechnol 61:472–478
    [Google Scholar]
  24. Howard M. B., Ekborg N. A., Taylor L. E., Hutcheson S. W., Weiner R. M. 2004; Identification and analysis of polyserine linker domains in prokaryotic proteins with emphasis on the marine bacterium Microbulbifer degradans . Protein Sci 13:1422–1425
    [Google Scholar]
  25. Jamal-Talabani S., Boraston A. B., Turkenburg J. P., Tarbouriech N., Ducros V. M., Davies G. J. 2004; Ab initio structure determination and functional characterization of CBM36; a new family of calcium-dependent carbohydrate binding modules. Structure 12:1177–1187
    [Google Scholar]
  26. Johnson E. A., Sakajoh M., Halliwell G., Madia A., Demain A. L. 1982; Saccharification of complex cellulosic substrates by the cellulase system from Clostridium thermocellum . Appl Environ Microbiol 43:1125–1132
    [Google Scholar]
  27. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  28. Lamed R., Bayer E. A. 1988; Characterization of a cellulose-binding cellulase-containing complex in Clostridium thermocellum . FEMS Symp 43:101–116
    [Google Scholar]
  29. Lynd L. R., Weimer P. J., van Zyl W. H., Pretorius I. S. 2002; Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577
    [Google Scholar]
  30. Notenboom V., Boraston A. B., Chiu P., Freelove A. C., Kilburn D. G., Rose D. R. 2001; Recognition of cello-oligosaccharides by a family 17 carbohydrate-binding module: an X-ray crystallographic, thermodynamic and mutagenic study. J Mol Biol 314:797–806
    [Google Scholar]
  31. Pell G., Williamson M. P., Walters C., Du H., Gilbert H. J., Bolam D. N. 2003; Importance of hydrophobic and polar residues in ligand binding in the family 15 carbohydrate-binding module from Cellvibrio japonicus Xyn10C. Biochemistry 42:9316–9323
    [Google Scholar]
  32. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  33. Schwarz W. H., Zverlov V. V., Bahl H. 2004; Extracellular glycosyl hydrolases from clostridia. Adv Appl Microbiol 56:215–261
    [Google Scholar]
  34. Tomme P., Creagh A. L., Kilburn D. G., Hayens C. A. 1996; Interaction of polysaccharides with the N-terminal cellulose-binding domain of Cellulomonas fimi CenC. I. Binding specifity and calorimetric analysis. Biochemistry 35:13885–13894
    [Google Scholar]
  35. Wood T. M. 1988; Preparation of crystalline, amorphous and dyed cellulase substrates. Methods Enzymol 160:19–25
    [Google Scholar]
  36. Wood T. M., Bhat K. M. 1988; Methods for measuring of cellulase activities. Methods Enzymol 160:87–112
    [Google Scholar]
  37. Xie H., Gilbert H. J., Charnock S. J., Davies G. J., Williamson M. P., Simpson P. J., Raghothama S., Fontes C. M., Dias F. M. other authors 2001; Clostridium thermocellum Xyn10B carbohydrate-binding module 22-2: the role of conserved amino acids in ligand binding. Biochemistry 40:9167–9176
    [Google Scholar]
  38. Zverlov V. V., Volkov I. Y., Velikodvorskaya G. A., Schwarz W. H. 2001; The binding pattern of two carbohydrate-binding modules of laminarinase Lam16A from Thermotoga neapolitana: differences in beta-glucan binding within family CBM4. Microbiology 147:621–629
    [Google Scholar]
  39. Zverlov V. V., Kellermann J., Schwarz W. H. 2005; Functional subgenomics of Clostridium thermocellum cellulosomal genes: identification of the major catalytic components in the extracellular complex and detection of three new enzymes. Proteomics 5:3646–3653
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.026930-0
Loading
/content/journal/micro/10.1099/mic.0.026930-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed