1887

Abstract

serovar Choleraesuis (SC) is an important enteric pathogen that causes serious systemic infections in swine and humans. To identify the genes required for resistance to antimicrobial peptides, we constructed a bank of SC transposon mutants and screened them for hypersensitivity to the cationic peptide polymyxin B. Here we report one isolated polymyxin B-susceptible mutant that also exhibited increased sensitivity toward human neutrophil peptide alpha-defensin 1 (HNP-1) and hydrophobic antibiotics including erythromycin and novobiocin. The mutant had a mutation in an ORF identified as outer membrane -barrel protein gene . The purified recombinant Omb protein was characterized as a ferrous iron-binding protein. The constructed isogenic mutant grew more slowly in iron-limiting conditions than the wild-type (WT) parent strain. In addition, compared with the WT strain, the mutant exhibited an increase in net negative charge upon the cell surface and was more easily killed by polymyxin B, HNP-1 and hydrophobic antibiotics. The gene was transcribed, regardless of the iron content within the growth medium, and the Omb protein appeared exclusively in the outer membrane fraction. Infection experiments demonstrated virulence attenuation when the mutant was administered orally or intraperitoneally to mice. This study indicates that Omb is a previously unrecognized ferrous iron-binding protein. , Omb may be involved in the acquisition of ferrous iron during the initial stages of SC infection and appears to be an important virulence factor for SC in mice.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.026880-0
2009-07-01
2020-07-04
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/7/2365.html?itemId=/content/journal/micro/10.1099/mic.0.026880-0&mimeType=html&fmt=ahah

References

  1. Bayer A. S., Kupferwasser L. I., Brown M. H., Skurray R. A., Grkovic S., Jones T., Mukhopadhay K., Yeaman M. R.. 2006; Low-level resistance of Staphylococcus aureus to thrombin-induced platelet microbicidal protein 1 in vitro associated with qacA gene carriage is independent of multidrug efflux pump activity. Antimicrob Agents Chemother50:2448–2454
    [Google Scholar]
  2. Beliavskaia V. A., Timofeev I. V., Perminova N. G., Paletskaia T. F., Kozhina E. M., Zagrebel'nyi S. N.. 2000; Construction of an expression plasmid vector for accomplishing in vivo delivery of recombinant biologically active proteins. 2. Synthesis of HBcAG in a vaccine strain of Salmonella choleraesuis. Mol Gen Mikrobiol Virusol3:17–21
    [Google Scholar]
  3. Bullen J. J., Rogers H. J., Spalding P. B., Ward C. G.. 2006; Natural resistance, iron and infection: a challenge for clinical medicine. J Med Microbiol55:251–258
    [Google Scholar]
  4. Campos M. A., Vargas M. A., Regueiro V., Llompart C. M., Alberti S., Bengoechea J. A.. 2004; Capsule polysaccharide mediates bacterial resistance to antimicrobial peptides. Infect Immun72:7107–7114
    [Google Scholar]
  5. Chang M. C., Chang J. C., Chen J. P.. 1993; Cloning and nucleotide sequence of an extracellular α-amylase gene from Aeromonas hydrophila MCC-1. J Gen Microbiol139:3215–3223
    [Google Scholar]
  6. Chiu C. H., Tang P., Chu C., Hu S., Bao O., Yu J., Chou Y. Y., Wang H. S., Lee Y. S.. 2005; The genome sequence of Salmonella enterica serovar Choleraesuis, a highly invasive and resistant zoonotic pathogen. Nucleic Acids Res33:1690–1698
    [Google Scholar]
  7. Chiu C. H., Chuang C. H., Chiu S., Su L. H., Lin T. Y.. 2006; Salmonella enterica serotype Choleraesuis infections in pediatric patients. Pediatrics117:e1193–e1196
    [Google Scholar]
  8. Clarke T. E., Tari L. W., Vogel H. J.. 2001; Structural biology of bacterial iron uptake systems. Curr Top Med Chem1:7–30
    [Google Scholar]
  9. Cornelis P., Digneffe C., Willemot K.. 1982; Cloning and expression of a Bacillus coagulans amylase gene in Escherichia coli. Mol Gen Genet186:507–511
    [Google Scholar]
  10. Daldal F.. 1984; Nucleotide sequence of gene pfkB encoding the minor phosphofructokinase of Escherichia coli K-12. Gene28:337–342
    [Google Scholar]
  11. Doig P., Trust T. J.. 1994; Identification of surface-exposed outer membrane antigens of Helicobacter pylori. Infect Immun62:4526–4533
    [Google Scholar]
  12. Donnenberg M. S., Kaper J. B.. 1991; Construction of an eae deletion mutant of enteropathogenic Escherichia coli by using a positive-selection suicide vector. Infect Immun59:4310–4317
    [Google Scholar]
  13. Guo L., Lim K. B., Poduje C. M., Daniel M., Gunn J. S., Hackett M., Miller S. I.. 1998; Lipid A acylation and bacterial resistance against vertebrate antimicrobial peptides. Cell95:189–198
    [Google Scholar]
  14. Hancock R. E. W., Chapple D. S.. 1999; Peptide antibiotics. Antimicrob Agents Chemother43:1317–1323
    [Google Scholar]
  15. Hensel M., Shea J. E., Gleeson C., Jones M. D., Dalton E., Holden D. W.. 1995; Simultaneous identification of bacterial virulence genes by negative selection. Science269:400–403
    [Google Scholar]
  16. Islam D., Bandholtz L., Nilsson J., Wigzell H., Christensson B., Agerberth B., Gudmundsson G. H.. 2001; Downregulation of bactericidal peptides in enteric infections: a novel immune escape mechanism with bacterial DNA as a potential regulator. Nat Med7:180–185
    [Google Scholar]
  17. Knight S. A. B., Vilaire G., Lesuisse E., Dancis A.. 2005; Iron acquisition from transferrin by Candida albicans depends on the reductive pathway. Infect Immun73:5482–5492
    [Google Scholar]
  18. Kristian S. A., Dürr M., Van Strijp J. A., Neumeister B., Peschel A.. 2003; MprF-mediated lysinylation of phospholipids in Staphylococcus aureus leads to protection against oxygen-independent neutrophil killing. Infect Immun71:546–549
    [Google Scholar]
  19. Kristian S. A., Datta V., Weidenmaier C., Kansal R., Fedtke I., Peschel A., Gallo R. L., Nizet V.. 2005; d-Alanylation of teichoic acids promotes group A Streptococcus antimicrobial peptide resistance, neutrophil survival, and epithelial cell invasion. J Bacteriol187:6719–6725
    [Google Scholar]
  20. Mildiner-Earley S., Miller V. L.. 2006; Characterization of a novel porin involved in systemic Yersinia enterocolitica infection. Infect Immun74:4361–4365
    [Google Scholar]
  21. Nassif X., Mazert M. C., Mounier J., Sansonetti P. J.. 1987; Evaluation with an iuc : Tn 10 mutant of the role of aerobactin production in the virulence of Shigella flexneri. Infect Immun55:1963–1969
    [Google Scholar]
  22. Nyberg P., Rasmussen M., Bjorck L.. 2004; α 2-Macroglobulin-proteinase complexes protect Streptococcus pyogenes from killing by the antimicrobial peptide LL-37. J Biol Chem279:52820–52823
    [Google Scholar]
  23. Pappenheimer A. M. Jr, Johnson S. J.. 1936; Studies in diphtheria toxin production. I. The effect of iron and copper. Br J Exp Pathol17:335–341
    [Google Scholar]
  24. Petrat F., Rauen U., de Groot H.. 1999; Determination of the chelatable iron pool of isolated rat hepatocytes by digital fluorescence microscopy using the fluorescent probe, phen green SK. Hepatology29:1171–1179
    [Google Scholar]
  25. Reed L. J., Muench H.. 1938; A simple method of estimating the fifty percent endpoints. Am J Hyg27:493–497
    [Google Scholar]
  26. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  27. Schwartz K. J.. 1999; Salmonellosis.. In Diseases of Swine , 8th edn. pp535–551 Edited by Straw B. E., D'Allaire S., Mengeling W. L., Taylor D. J. Ames, IA: Iowa State University;
    [Google Scholar]
  28. Tamayo R., Choudhury B., Septer A., Merighi M., Carlson R., Gunn J. S.. 2005; Identification of cptA, a PmrA-regulated locus required for phosphoethanolamine modification of the Salmonella enterica serovar Typhimurium lipopolysaccharide core. J Bacteriol187:3391–3399
    [Google Scholar]
  29. Tzeng Y. L., Ambrose K. D., Zughaier S., Zhou X., Miller Y. K., Shafer W. M., Stephens D. S.. 2005; Cationic antimicrobial peptide resistance in Neisseria meningitidis. J Bacteriol187:5387–5396
    [Google Scholar]
  30. Vaara M.. 1992; Agents that increase the permeability of the outer membrane. Microbiol Rev56:395–411
    [Google Scholar]
  31. von Heijne G.. 1983; Patterns of amino acids near signal-sequence cleavage sites. Eur J Biochem133:17–21
    [Google Scholar]
  32. Wandersman C., Delepelaire P.. 2004; Bacterial iron sources: from siderophores to hemophores. Annu Rev Microbiol58:611–647
    [Google Scholar]
  33. Wang J. Y., Hwang J. J., Hsu C. N., Lin L. C., Hsueh P. R.. 2006; Bacteraemia due to ciprofloxacin-resistant Salmonella enterica serotype Choleraesuis in adult patients at a university hospital in Taiwan. Epidemiol Infect134:977–984
    [Google Scholar]
  34. Weinberg E. D.. 1978; Iron and infection. Microbiol Rev42:45–66
    [Google Scholar]
  35. Wu W. S., Hsieh P. C., Huang T. M., Chang Y. F., Chang C. F.. 2002; Cloning and characterization of an iron regulated locus, IroA, in Salmonella enterica serovar Choleraesuis. DNA Seq13:333–341
    [Google Scholar]
  36. Wyckoff E. E., Mev A. R., Leimbach A., Fisher C. F., Payne S. M.. 2006; Characterization of ferric and ferrous iron transport systems in Vibrio cholerae. J Bacteriol188:6515–6523
    [Google Scholar]
  37. Zhai Y., Saier M. H.. 2002; The beta-barrel finder (BBF) program, allowing identification of outer membrane beta-barrel proteins encoded within prokaryotic genomes. Protein Sci11:2196–2207
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.026880-0
Loading
/content/journal/micro/10.1099/mic.0.026880-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error