1887

Abstract

Glycerophosphodiesters are formed by deacylation of phospholipids. and other soil-dwelling actinomycetes utilize glycerophosphodiesters as phosphate and carbon sources by the action of glycerophosphodiester phosphodiesterases (GDPDs). Seven genes encoding putative GDPDs occur in the genome. Two of these genes, and , encoding extracellular GDPDs, showed a PhoP-dependent upregulated profile in response to phosphate shiftdown. Expression studies using the genes as reporter confirmed the PhoP dependence of both and . Footprinting analyses with pure GST-PhoP of the promoter revealed four protected direct repeat units (DRu). PhoP binding affinity to the promoter was lower and revealed a protected region containing five DRu. As expected for regulon genes, inorganic phosphate, and also glycerol 3-phosphate, inhibited the expression from both and . The expression of was also repressed by serine and inositol but expression of was not. In contrast, glucose, fructose and glycerol increased expression of but not that of . In summary, our results suggest an interaction of phosphate control mediated by PhoP and carbon source regulation of the and genes involving complex operator structures.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.026799-0
2009-06-01
2020-03-30
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/6/1800.html?itemId=/content/journal/micro/10.1099/mic.0.026799-0&mimeType=html&fmt=ahah

References

  1. Angell S., Lewis C. G., Buttner M. J., Bibb M. J.. 1994; Glucose repression in Streptomyces coelicolor A3(2): a likely regulatory role for glucose kinase. Mol Gen Genet244:135–143
    [Google Scholar]
  2. Antelmann H., Scharf C., Hecker M.. 2000; Phosphate starvation-inducible proteins of Bacillus subtilis : proteomics and transcriptional analysis. J Bacteriol182:4478–4490
    [Google Scholar]
  3. Apel A. K., Sola-Landa A., Rodríguez-García A., Martín J. F.. 2007; Phosphate control of phoA , phoC and phoD gene expression in Streptomyces coelicolor reveals significant differences in binding of PhoP to their promoter regions. Microbiology153:3527–3537
    [Google Scholar]
  4. Bentley S. D., Chater K. F., Cerdeno-Tarraga A. M., Challis G. L., Thomson N. R., James K. D., Harris D. E., Quail M. A., Kieser H.. other authors 2002; Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2. Nature417:141–147
    [Google Scholar]
  5. Brzoska P., Boos W.. 1988; Characteristics of a ugp -encoded and phoB -dependent glycerophosphoryl diester phosphodiesterase which is physically dependent on the Ugp transport system of Escherichia coli . J Bacteriol170:4125–4135
    [Google Scholar]
  6. Brzoska P., Boos W.. 1989; The ugp -encoded glycerophosphoryldiester phosphodiesterase, a transport-related enzyme of Escherichia coli . FEMS Microbiol Rev5:115–124
    [Google Scholar]
  7. Challis G. L., Hopwood D. A.. 2003; Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species. Proc Natl Acad Sci U S A100 :Suppl. 214555–14561
    [Google Scholar]
  8. Díaz M., Esteban A., Fernández-Abalos J. M., Santamaría R. I.. 2005; The high-affinity phosphate-binding protein PstS is accumulated under high fructose concentrations and mutation of the corresponding gene affects differentiation in Streptomyces lividans . Microbiology151:2583–2592
    [Google Scholar]
  9. Divecha N., Irvine R. F.. 1995; Phospholipid signaling. Cell80:269–278
    [Google Scholar]
  10. Doull J. L., Vining L. C.. 1989; Culture conditions promoting dispersed growth and biphasic production of actinorhodin in shaken cultures of Streptomyces coelicolor A3(2. FEMS Microbiol Lett53:265–268
    [Google Scholar]
  11. Esteban A., Díaz M., Yepes A., Santamaría R. I.. 2008; Expression of the pstS gene of Streptomyces lividans is regulated by the carbon source and is partially independent of the PhoP regulator. BMC Microbiol8:201
    [Google Scholar]
  12. Kasahara M., Makino K., Amemura M., Nakata A., Shinagawa H.. 1991; Dual regulation of the ugp operon by phosphate and carbon starvation at two interspaced promoters. J Bacteriol173:549–558
    [Google Scholar]
  13. Kieser T., Bibb M. J., Buttner M. J., Chater K. F., Hopwood D. A.. 2000; Practical Streptomyces Genetics Norwich, UK: John Innes Foundation;
  14. Kwakman J. H., Postma P. W.. 1994; Glucose kinase has a regulatory role in carbon catabolite repression in Streptomyces coelicolor . J Bacteriol176:2694–2698
    [Google Scholar]
  15. Larson T. J., Ehrmann M., Boos W.. 1983; Periplasmic glycerophosphodiester phosphodiesterase of Escherichia coli , a new enzyme of the glp regulon. J Biol Chem258:5428–5432
    [Google Scholar]
  16. Larson T. J., Ye S. Z., Weissenborn D. L., Hoffmann H. J., Schweizer H.. 1987; Purification and characterization of the repressor for the sn -glycerol 3-phosphate regulon of Escherichia coli K12. J Biol Chem262:15869–15874
    [Google Scholar]
  17. MacNeil D. J., Gewain K. M., Ruby C. L., Dezeny G., Gibbons P. H., MacNeil T.. 1992; Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene111:61–68
    [Google Scholar]
  18. Martín J. F., Demain A. L.. 1980; Control of antibiotic synthesis. Microbiol Rev44:230–251
    [Google Scholar]
  19. McLoughlin S. Y., Jackson C., Liu J. W., Ollis D. L.. 2004; Growth of Escherichia coli coexpressing phosphotriesterase and glycerophosphodiester phosphodiesterase, using paraoxon as the sole phosphorus source. Appl Environ Microbiol70:404–412
    [Google Scholar]
  20. Nilsson R. P., Beijer L., Rutberg B.. 1994; The glpT and glpQ genes of the glycerol regulon in Bacillus subtilis . Microbiology140:723–730
    [Google Scholar]
  21. Nogusa Y., Fujioka Y., Komatsu R., Kato N., Yanaka N.. 2004; Isolation and characterization of two serpentine membrane proteins containing glycerophosphodiester phosphodiesterase, GDE2 and GDE6. Gene337:173–179
    [Google Scholar]
  22. Oh W. S., Im Y. S., Yeon K. Y., Yoon Y. J., Kim J. W.. 2007; Phosphate and carbon source regulation of alkaline phosphatase and phospholipase in Vibrio vulnificus . J Microbiol45:311–317
    [Google Scholar]
  23. Overduin P., Boos W., Tommassen J.. 1988; Nucleotide sequence of the ugp genes of Escherichia coli K-12: homology to the maltose system. Mol Microbiol2:767–775
    [Google Scholar]
  24. Patton-Vogt J.. 2007; Transport and metabolism of glycerophosphodiesters produced through phospholipid deacylation. Biochim Biophys Acta1771:337–342
    [Google Scholar]
  25. Puri-Taneja A., Paul S., Chen Y., Hulett F. M.. 2006; CcpA causes repression of the phoPR promoter through a novel transcription start site, P(A6. J Bacteriol188:1266–1278
    [Google Scholar]
  26. Rao M., Sockanathan S.. 2005; Transmembrane protein GDE2 induces motor neuron differentiation in vivo. Science309:2212–2215
    [Google Scholar]
  27. Rodríguez-García A., Barreiro C., Santos-Beneit F., Sola-Landa A., Martín J. F.. 2007; Genome-wide transcriptomic and proteomic analysis of the primary response to phosphate limitation in Streptomyces coelicolor M145 and in a Δ phoP mutant. Proteomics7:2410–2429
    [Google Scholar]
  28. Sage A. E., Vasil M. L.. 1997; Osmoprotectant-dependent expression of plcH , encoding the hemolytic phospholipase C, is subject to novel catabolite repression control in Pseudomonas aeruginosa PAO1. J Bacteriol179:4874–4881
    [Google Scholar]
  29. Santos-Beneit F., Rodríguez-García A., Franco-Domínguez E., Martín J. F.. 2008; Phosphate-dependent regulation of the low- and high-affinity transport systems in the model actinomycete Streptomyces coelicolor . Microbiology154:2356–2370
    [Google Scholar]
  30. Santos-Beneit F., Rodríguez-García A., Sola-Landa A., Martín J. F.. 2009; Crosstalk between two global regulators in Streptomyces : PhoP and AfsR interact in the control of afsS, pstS and phoRP transcription. Mol Microbiol72:53–68
    [Google Scholar]
  31. Schaaf S., Bott M.. 2007; Target genes and DNA-binding sites of the response regulator PhoR from Corynebacterium glutamicum . J Bacteriol189:5002–5011
    [Google Scholar]
  32. Schneider T. D.. 1996; Reading of DNA sequence logos: prediction of major groove binding by information theory. Methods Enzymol274:445–455
    [Google Scholar]
  33. Schneider T. D.. 1997a; Information content of individual genetic sequences. J Theor Biol189:427–441
    [Google Scholar]
  34. Schneider T. D.. 1997b; Sequence walkers: a graphical method to display how binding proteins interact with DNA or RNA sequences. Nucleic Acids Res25:4408–4415
    [Google Scholar]
  35. Sola-Landa A., Rodríguez-García A., Franco-Dominguez E., Martín J. F.. 2005; Binding of PhoP to promoters of phosphate-regulated genes in Streptomyces coelicolor : identification of PHO boxes. Mol Microbiol56:1373–1385
    [Google Scholar]
  36. Sola-Landa A., Rodríguez-García A., Apel A. K., Martín J. F.. 2008; Target genes and structure of the direct repeats in the DNA-binding sequences of the response regulator PhoP in Streptomyces coelicolor . Nucleic Acids Res36:1358–1368
    [Google Scholar]
  37. Strohl W. R.. 1992; Compilation and analysis of DNA sequences associated with apparent streptomycete promoters. Nucleic Acids Res20:961–974
    [Google Scholar]
  38. Tommassen J., Eiglmeier K., Cole S. T., Overduin P., Larson T. J., Boos W.. 1991; Characterization of two genes, glpQ and ugpQ , encoding glycerophosphoryl diester phosphodiesterases of Escherichia coli . Mol Gen Genet226:321–327
    [Google Scholar]
  39. van Wezel G. P., König M., Mahr K., Nothaft H., Thomae A. W., Bibb M., Titgemeyer F.. 2007; A new piece of an old jigsaw: glucose kinase is activated posttranslationally in a glucose transport-dependent manner in Streptomyces coelicolor A3(2. J Mol Microbiol Biotechnol12:67–74
    [Google Scholar]
  40. Von Döhren H., Gräfe U.. 1997; General aspects of secondary metabolism. In Biotechnology. Products of Secondary Metabolism vol. 7 pp1–55 Edited by Kleinkauf H., von Doren H. Weinheim, Germany: VCH;
  41. Wanner B. L., Wilmes M. R., Young D. C.. 1988; Control of bacterial alkaline phosphatase synthesis and variation in an Escherichia coli K-12 phoR mutant by adenyl cyclase, the cyclic AMP receptor protein, and the phoM operon. J Bacteriol170:1092–1102
    [Google Scholar]
  42. Widdick D. A., Dilks K., Chandra G., Bottrill A., Naldrett M., Pohlschröder M., Palmer T.. 2006; The twin-arginine translocation pathway is a major route of protein export in Streptomyces coelicolor . Proc Natl Acad Sci U S A103:17927–17932
    [Google Scholar]
  43. Zheng B., Berrie C. P., Corda D., Farquhar M. G.. 2003; GDE1/MIR16 is a glycerophosphoinositol phosphodiesterase regulated by stimulation of G protein-coupled receptors. Proc Natl Acad Sci U S A100:1745–1750
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.026799-0
Loading
/content/journal/micro/10.1099/mic.0.026799-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error