1887

Abstract

Glycerophosphodiesters are formed by deacylation of phospholipids. and other soil-dwelling actinomycetes utilize glycerophosphodiesters as phosphate and carbon sources by the action of glycerophosphodiester phosphodiesterases (GDPDs). Seven genes encoding putative GDPDs occur in the genome. Two of these genes, and , encoding extracellular GDPDs, showed a PhoP-dependent upregulated profile in response to phosphate shiftdown. Expression studies using the genes as reporter confirmed the PhoP dependence of both and . Footprinting analyses with pure GST-PhoP of the promoter revealed four protected direct repeat units (DRu). PhoP binding affinity to the promoter was lower and revealed a protected region containing five DRu. As expected for regulon genes, inorganic phosphate, and also glycerol 3-phosphate, inhibited the expression from both and . The expression of was also repressed by serine and inositol but expression of was not. In contrast, glucose, fructose and glycerol increased expression of but not that of . In summary, our results suggest an interaction of phosphate control mediated by PhoP and carbon source regulation of the and genes involving complex operator structures.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.026799-0
2009-06-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/6/1800.html?itemId=/content/journal/micro/10.1099/mic.0.026799-0&mimeType=html&fmt=ahah

References

  1. Angell, S., Lewis, C. G., Buttner, M. J. & Bibb, M. J. ( 1994; ). Glucose repression in Streptomyces coelicolor A3(2): a likely regulatory role for glucose kinase. Mol Gen Genet 244, 135–143.
    [Google Scholar]
  2. Antelmann, H., Scharf, C. & Hecker, M. ( 2000; ). Phosphate starvation-inducible proteins of Bacillus subtilis: proteomics and transcriptional analysis. J Bacteriol 182, 4478–4490.[CrossRef]
    [Google Scholar]
  3. Apel, A. K., Sola-Landa, A., Rodríguez-García, A. & Martín, J. F. ( 2007; ). Phosphate control of phoA, phoC and phoD gene expression in Streptomyces coelicolor reveals significant differences in binding of PhoP to their promoter regions. Microbiology 153, 3527–3537.[CrossRef]
    [Google Scholar]
  4. Bentley, S. D., Chater, K. F., Cerdeno-Tarraga, A. M., Challis, G. L., Thomson, N. R., James, K. D., Harris, D. E., Quail, M. A., Kieser, H. & other authors ( 2002; ). Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417, 141–147.[CrossRef]
    [Google Scholar]
  5. Brzoska, P. & Boos, W. ( 1988; ). Characteristics of a ugp-encoded and phoB-dependent glycerophosphoryl diester phosphodiesterase which is physically dependent on the Ugp transport system of Escherichia coli. J Bacteriol 170, 4125–4135.
    [Google Scholar]
  6. Brzoska, P. & Boos, W. ( 1989; ). The ugp-encoded glycerophosphoryldiester phosphodiesterase, a transport-related enzyme of Escherichia coli. FEMS Microbiol Rev 5, 115–124.
    [Google Scholar]
  7. Challis, G. L. & Hopwood, D. A. ( 2003; ). Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species. Proc Natl Acad Sci U S A 100 (Suppl. 2), 14555–14561.[CrossRef]
    [Google Scholar]
  8. Díaz, M., Esteban, A., Fernández-Abalos, J. M. & Santamaría, R. I. ( 2005; ). The high-affinity phosphate-binding protein PstS is accumulated under high fructose concentrations and mutation of the corresponding gene affects differentiation in Streptomyces lividans. Microbiology 151, 2583–2592.[CrossRef]
    [Google Scholar]
  9. Divecha, N. & Irvine, R. F. ( 1995; ). Phospholipid signaling. Cell 80, 269–278.[CrossRef]
    [Google Scholar]
  10. Doull, J. L. & Vining, L. C. ( 1989; ). Culture conditions promoting dispersed growth and biphasic production of actinorhodin in shaken cultures of Streptomyces coelicolor A3(2). FEMS Microbiol Lett 53, 265–268.
    [Google Scholar]
  11. Esteban, A., Díaz, M., Yepes, A. & Santamaría, R. I. ( 2008; ). Expression of the pstS gene of Streptomyces lividans is regulated by the carbon source and is partially independent of the PhoP regulator. BMC Microbiol 8, 201 [CrossRef]
    [Google Scholar]
  12. Kasahara, M., Makino, K., Amemura, M., Nakata, A. & Shinagawa, H. ( 1991; ). Dual regulation of the ugp operon by phosphate and carbon starvation at two interspaced promoters. J Bacteriol 173, 549–558.
    [Google Scholar]
  13. Kieser, T., Bibb, M. J., Buttner, M. J., Chater, K. F. & Hopwood, D. A. ( 2000; ). Practical Streptomyces Genetics. Norwich, UK: John Innes Foundation.
  14. Kwakman, J. H. & Postma, P. W. ( 1994; ). Glucose kinase has a regulatory role in carbon catabolite repression in Streptomyces coelicolor. J Bacteriol 176, 2694–2698.
    [Google Scholar]
  15. Larson, T. J., Ehrmann, M. & Boos, W. ( 1983; ). Periplasmic glycerophosphodiester phosphodiesterase of Escherichia coli, a new enzyme of the glp regulon. J Biol Chem 258, 5428–5432.
    [Google Scholar]
  16. Larson, T. J., Ye, S. Z., Weissenborn, D. L., Hoffmann, H. J. & Schweizer, H. ( 1987; ). Purification and characterization of the repressor for the sn-glycerol 3-phosphate regulon of Escherichia coli K12. J Biol Chem 262, 15869–15874.
    [Google Scholar]
  17. MacNeil, D. J., Gewain, K. M., Ruby, C. L., Dezeny, G., Gibbons, P. H. & MacNeil, T. ( 1992; ). Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene 111, 61–68.[CrossRef]
    [Google Scholar]
  18. Martín, J. F. & Demain, A. L. ( 1980; ). Control of antibiotic synthesis. Microbiol Rev 44, 230–251.
    [Google Scholar]
  19. McLoughlin, S. Y., Jackson, C., Liu, J. W. & Ollis, D. L. ( 2004; ). Growth of Escherichia coli coexpressing phosphotriesterase and glycerophosphodiester phosphodiesterase, using paraoxon as the sole phosphorus source. Appl Environ Microbiol 70, 404–412.[CrossRef]
    [Google Scholar]
  20. Nilsson, R. P., Beijer, L. & Rutberg, B. ( 1994; ). The glpT and glpQ genes of the glycerol regulon in Bacillus subtilis. Microbiology 140, 723–730.[CrossRef]
    [Google Scholar]
  21. Nogusa, Y., Fujioka, Y., Komatsu, R., Kato, N. & Yanaka, N. ( 2004; ). Isolation and characterization of two serpentine membrane proteins containing glycerophosphodiester phosphodiesterase, GDE2 and GDE6. Gene 337, 173–179.[CrossRef]
    [Google Scholar]
  22. Oh, W. S., Im, Y. S., Yeon, K. Y., Yoon, Y. J. & Kim, J. W. ( 2007; ). Phosphate and carbon source regulation of alkaline phosphatase and phospholipase in Vibrio vulnificus. J Microbiol 45, 311–317.
    [Google Scholar]
  23. Overduin, P., Boos, W. & Tommassen, J. ( 1988; ). Nucleotide sequence of the ugp genes of Escherichia coli K-12: homology to the maltose system. Mol Microbiol 2, 767–775.[CrossRef]
    [Google Scholar]
  24. Patton-Vogt, J. ( 2007; ). Transport and metabolism of glycerophosphodiesters produced through phospholipid deacylation. Biochim Biophys Acta 1771, 337–342.[CrossRef]
    [Google Scholar]
  25. Puri-Taneja, A., Paul, S., Chen, Y. & Hulett, F. M. ( 2006; ). CcpA causes repression of the phoPR promoter through a novel transcription start site, P(A6). J Bacteriol 188, 1266–1278.[CrossRef]
    [Google Scholar]
  26. Rao, M. & Sockanathan, S. ( 2005; ). Transmembrane protein GDE2 induces motor neuron differentiation in vivo. Science 309, 2212–2215.[CrossRef]
    [Google Scholar]
  27. Rodríguez-García, A., Barreiro, C., Santos-Beneit, F., Sola-Landa, A. & Martín, J. F. ( 2007; ). Genome-wide transcriptomic and proteomic analysis of the primary response to phosphate limitation in Streptomyces coelicolor M145 and in a ΔphoP mutant. Proteomics 7, 2410–2429.[CrossRef]
    [Google Scholar]
  28. Sage, A. E. & Vasil, M. L. ( 1997; ). Osmoprotectant-dependent expression of plcH, encoding the hemolytic phospholipase C, is subject to novel catabolite repression control in Pseudomonas aeruginosa PAO1. J Bacteriol 179, 4874–4881.
    [Google Scholar]
  29. Santos-Beneit, F., Rodríguez-García, A., Franco-Domínguez, E. & Martín, J. F. ( 2008; ). Phosphate-dependent regulation of the low- and high-affinity transport systems in the model actinomycete Streptomyces coelicolor. Microbiology 154, 2356–2370.[CrossRef]
    [Google Scholar]
  30. Santos-Beneit, F., Rodríguez-García, A., Sola-Landa, A. & Martín, J. F. ( 2009; ). Crosstalk between two global regulators in Streptomyces: PhoP and AfsR interact in the control of afsS, pstS and phoRP transcription. Mol Microbiol 72, 53–68.[CrossRef]
    [Google Scholar]
  31. Schaaf, S. & Bott, M. ( 2007; ). Target genes and DNA-binding sites of the response regulator PhoR from Corynebacterium glutamicum. J Bacteriol 189, 5002–5011.[CrossRef]
    [Google Scholar]
  32. Schneider, T. D. ( 1996; ). Reading of DNA sequence logos: prediction of major groove binding by information theory. Methods Enzymol 274, 445–455.
    [Google Scholar]
  33. Schneider, T. D. ( 1997a; ). Information content of individual genetic sequences. J Theor Biol 189, 427–441.[CrossRef]
    [Google Scholar]
  34. Schneider, T. D. ( 1997b; ). Sequence walkers: a graphical method to display how binding proteins interact with DNA or RNA sequences. Nucleic Acids Res 25, 4408–4415.[CrossRef]
    [Google Scholar]
  35. Sola-Landa, A., Rodríguez-García, A., Franco-Dominguez, E. & Martín, J. F. ( 2005; ). Binding of PhoP to promoters of phosphate-regulated genes in Streptomyces coelicolor: identification of PHO boxes. Mol Microbiol 56, 1373–1385.[CrossRef]
    [Google Scholar]
  36. Sola-Landa, A., Rodríguez-García, A., Apel, A. K. & Martín, J. F. ( 2008; ). Target genes and structure of the direct repeats in the DNA-binding sequences of the response regulator PhoP in Streptomyces coelicolor. Nucleic Acids Res 36, 1358–1368.
    [Google Scholar]
  37. Strohl, W. R. ( 1992; ). Compilation and analysis of DNA sequences associated with apparent streptomycete promoters. Nucleic Acids Res 20, 961–974.[CrossRef]
    [Google Scholar]
  38. Tommassen, J., Eiglmeier, K., Cole, S. T., Overduin, P., Larson, T. J. & Boos, W. ( 1991; ). Characterization of two genes, glpQ and ugpQ, encoding glycerophosphoryl diester phosphodiesterases of Escherichia coli. Mol Gen Genet 226, 321–327.
    [Google Scholar]
  39. van Wezel, G. P., König, M., Mahr, K., Nothaft, H., Thomae, A. W., Bibb, M. & Titgemeyer, F. ( 2007; ). A new piece of an old jigsaw: glucose kinase is activated posttranslationally in a glucose transport-dependent manner in Streptomyces coelicolor A3(2). J Mol Microbiol Biotechnol 12, 67–74.[CrossRef]
    [Google Scholar]
  40. Von Döhren, H. & Gräfe, U. ( 1997; ). General aspects of secondary metabolism. In Biotechnology. Products of Secondary Metabolism, vol. 7, pp. 1–55. Edited by H. Kleinkauf & H. von Doren. Weinheim, Germany: VCH.
  41. Wanner, B. L., Wilmes, M. R. & Young, D. C. ( 1988; ). Control of bacterial alkaline phosphatase synthesis and variation in an Escherichia coli K-12 phoR mutant by adenyl cyclase, the cyclic AMP receptor protein, and the phoM operon. J Bacteriol 170, 1092–1102.
    [Google Scholar]
  42. Widdick, D. A., Dilks, K., Chandra, G., Bottrill, A., Naldrett, M., Pohlschröder, M. & Palmer, T. ( 2006; ). The twin-arginine translocation pathway is a major route of protein export in Streptomyces coelicolor. Proc Natl Acad Sci U S A 103, 17927–17932.[CrossRef]
    [Google Scholar]
  43. Zheng, B., Berrie, C. P., Corda, D. & Farquhar, M. G. ( 2003; ). GDE1/MIR16 is a glycerophosphoinositol phosphodiesterase regulated by stimulation of G protein-coupled receptors. Proc Natl Acad Sci U S A 100, 1745–1750.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.026799-0
Loading
/content/journal/micro/10.1099/mic.0.026799-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error