1887

Abstract

Methionine aminopeptidases (MetAPs or MAPs, encoded by genes) are ubiquitous and pivotal enzymes for protein maturation in all living organisms. Whereas most bacteria harbour only one gene, many cyanobacterial genomes contain two paralogues, the genome of sp. PCC 6803 even three. The physiological function of multiple paralogues remains elusive so far. This communication reports for the first time differential MetAP function in a cyanobacterium. In sp. PCC 6803, the universally conserved gene () is predominantly expressed in exponentially growing cells and appears to be a housekeeping gene. By contrast, expression of () and () genes increases during stress conditions. The paralogue is only transiently expressed, whereas the widely distributed gene appears to be the major MetAP during stress conditions. A -deficient mutant shows a subtle impairment of photosystem II properties even under non-stressed conditions. In particular, the binding site for the quinone Q is affected, indicating specific N-terminal methionine processing requirements of photosystem II components. MAP-A-specific processing becomes essential under certain stress conditions, since the -deficient mutant is severely impaired in surviving conditions of prolonged nitrogen starvation and high light exposure.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.026351-0
2009-05-01
2019-12-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/5/1427.html?itemId=/content/journal/micro/10.1099/mic.0.026351-0&mimeType=html&fmt=ahah

References

  1. Aldehni, M. F. & Forchhammer, K. ( 2006; ). Analysis of a non-canonical NtcA-dependent promoter in Synechococcus elongatus and its regulation by NtcA and PII. Arch Microbiol 184, 378–386.[CrossRef]
    [Google Scholar]
  2. Allen, J. F., Mullineaux, C. W., Sanders, C. E. & Melis, A. ( 1989; ). State transitions, photosystem stoichiometry adjustment and non-photochemical quenching in cyanobacterial cells acclimated to light absorbed by photosystem I or photosystem II. Photosynth Res 22, 157–166.[CrossRef]
    [Google Scholar]
  3. Aro, E.-M., Virgin, I. & Andersson, B. ( 1993; ). Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochim Biophys Acta 1143, 113–134.[CrossRef]
    [Google Scholar]
  4. Atanassova, A., Sugita, M., Sugiura, M., Pajpanova, T. & Ivanov, I. ( 2003; ). Molecular cloning, expression and characterization of three distinctive genes encoding methionine aminopeptidases in cyanobacterium Synechocystis sp. strain PCC 6803. Arch Microbiol 180, 185–193.[CrossRef]
    [Google Scholar]
  5. Barber, J. ( 2006; ). Photosystem II: an enzyme of global significance. Biochem Soc Trans 34, 619–631.[CrossRef]
    [Google Scholar]
  6. Ben-Bassat, A., Bauer, K., Chang, S.-Y., Myambo, K., Boosman, A. & Chang, S. ( 1987; ). Processing of the initiation methionine from proteins: properties of the Escherichia coli methionine aminopeptidase and its gene structure. J Bacteriol 169, 751–757.
    [Google Scholar]
  7. Chang, S.-Y., McGary, E. C. & Chang, S. ( 1989; ). Methionine aminopeptidase gene of Escherichia coli is essential for cell growth. J Bacteriol 171, 4071–4072.
    [Google Scholar]
  8. Collier, J. L. & Grossman, A. R. ( 1992; ). Chlorosis induced by nutrient deprivation in Synechococcus sp. strain PCC 7942: not all bleaching is the same. J Bacteriol 174, 4718–4726.
    [Google Scholar]
  9. Dalla Chiesa, M., Friso, G., Deák, Z., Vass, I., Barber, J. & Nixon, P. J. ( 1997; ). Reduced turnover of the D1 polypeptide and photoactivation of electron transfer in novel herbicide resistant mutants of Synechocystis sp. PCC 6803. Eur J Biochem 248, 731–740.[CrossRef]
    [Google Scholar]
  10. Frottin, F., Martinez, A., Peynot, P., Mitra, S., Holz, R. C., Giglione, C. & Meinnel, T. ( 2006; ). The proteomics of N-terminal methionine cleavage. Mol Cell Proteomics 5, 2336–2349.[CrossRef]
    [Google Scholar]
  11. Funk, C. ( 2000; ). Functional analysis of the PsbX protein by deletion of the corresponding gene in Synechocystis sp. PCC 6803. Plant Mol Biol 44, 815–827.[CrossRef]
    [Google Scholar]
  12. Garcia-Dominguez, M., Reyes, J. C. & Florencio, F. J. ( 2000; ). NtcA represses transcription of gifA and gifB, genes that encode inhibitors of glutamine synthetase type I from Synechocystis sp. PCC 6803. Mol Microbiol 35, 1192–1201.[CrossRef]
    [Google Scholar]
  13. Genty, B., Briantais, J. M. & Baker, N. R. ( 1989; ). The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990, 87–92.[CrossRef]
    [Google Scholar]
  14. Giglione, C., Vallon, O. & Meinnel, T. ( 2003; ). Control of protein life-span by N-terminal methionine excision. EMBO J 22, 13–23.[CrossRef]
    [Google Scholar]
  15. Görl, M., Sauer, J., Baier, T. & Forchhammer, K. ( 1998; ). Nitrogen starvation induced chlorosis in Synechococcus PCC 7942: adaptation to long-term survival. Microbiology 144, 2449–2458.[CrossRef]
    [Google Scholar]
  16. Grigorieva, G. & Shestakov, S. V. ( 1982; ). Transformation in the cyanobacterium Synechocystis 6803. FEMS Microbiol Lett 13, 367–370.[CrossRef]
    [Google Scholar]
  17. Ikeuchi, M., Eggers, B., Shen, G., Webber, A., Yu, J., Hiranoy, A., Inoue, Y. & Vermaas, W. ( 1991; ). Cloning of the psbK gene from Synechocystis sp. PCC 6803 and characterization of photosystem II in mutants lacking PSII-K. J Biol Chem 266, 11111–11115.
    [Google Scholar]
  18. Jiang, F., Wissen, S., Widersten, M., Bergman, B. & Mannervik, B. ( 2000; ). Examination of the transcription factor NtcA-binding motif by in vitro selection of DNA sequences from a random library. J Mol Biol 301, 783–793.[CrossRef]
    [Google Scholar]
  19. Kaneko, T., Sato, S., Kotani, H., Tanaka, A., Asamizu, E., Nakamura, Y., Miyajima, N., Hirosawa, M., Sugiura, M. & other authors ( 1996; ). Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC 6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 3, 109–136.[CrossRef]
    [Google Scholar]
  20. Keren, N., Liberton, M. & Pakrasi, H. B. ( 2005; ). Photochemical competence of assembled photosystem II core complex in cyanobacterial plasma membrane. J Biol Chem 280, 6548–6553.[CrossRef]
    [Google Scholar]
  21. Kern, J., Loll, B., Zouni, A., Saenger, W., Irrgang, K. D. & Biesiadka, J. ( 2005; ). Cyanobacterial photosystem II at a 3.2 Å resolution – the plastoquinone binding pocket. Photosynth Res 84, 153–159.[CrossRef]
    [Google Scholar]
  22. Klinkert, B., Ossenbühl, F., Sikrorski, M., Berry, S., Eichacker, L. & Nickelsen, J. ( 2004; ). PratA, a periplasmic tetratricopeptide repeat protein involved in biogenesis of photosystem II in Synechocystis sp. PCC 6803. J Biol Chem 279, 44639–44644.[CrossRef]
    [Google Scholar]
  23. Komenda, J., Barker, M., Kuvikova, S., de Vries, R., Mullineaux, C. W., Tichy, M. & Nixon, P. J. ( 2006; ). The FtsH protease slr0228 is important for quality control of photosystem II in the thylakoid membrane of Synechocystis sp. PCC 6803. J Biol Chem 281, 1145–1151.[CrossRef]
    [Google Scholar]
  24. Kufryk, G. I. & Vermaas, W. F. ( 2003; ). Slr2013 is a novel protein regulating functional assembly of photosystem II in Synechocystis sp. strain PCC 6803. J Bacteriol 185, 6615–6623.[CrossRef]
    [Google Scholar]
  25. Lowther, W. T. & Matthews, B. W. ( 2000; ). Structure and function of the methionine aminopeptidases. Biochim Biophys Acta 1477, 157–167.[CrossRef]
    [Google Scholar]
  26. Lowther, W. T., Orville, A. O., Madden, D. T., Lim, S., Rich, D. H. & Matthews, B. W. ( 1999; ). Escherichia coli methionine aminopeptidase: implications of crystallographic analyses of the native, mutant, and inhibited enzymes for the mechanism of catalysis. Biochemistry 38, 7678–7688.[CrossRef]
    [Google Scholar]
  27. Luque, I., Flores, E. & Herrero, A. ( 1994; ). Molecular mechanism for the operation of nitrogen control in cyanobacteria. EMBO J 13, 2862–2869.
    [Google Scholar]
  28. Mayers, S. R., Dubbs, J. M., Vass, I., Hideg, E., Nagy, L. & Barber, J. ( 1993; ). Further characterization of the psbH locus of Synechocystis sp. PCC 6803: inactivation of psbH impairs QA to QB electron transport in photosystem II. Biochemistry 32, 1454–1465.[CrossRef]
    [Google Scholar]
  29. Myers, J., Graham, J.-R. & Wang, R. T. ( 1980; ). Light harvesting in Anacystis nidulans studied in pigment mutants. Plant Physiol 66, 1144–1149.[CrossRef]
    [Google Scholar]
  30. Oettmeier, W. ( 1999; ). Herbicide resistant supersensitivity in photosystem II. Cell Mol Life Sci 55, 1255–1277.[CrossRef]
    [Google Scholar]
  31. Reyes, J. C., Muro-Pastor, M. I. & Florencio, F. J. ( 1997; ). Transcription of glutamine synthetase genes (glnA and glnN) from the cyanobacterium Synechocystis sp. strain PCC 6803 is differently regulated in response to nitrogen availability. J Bacteriol 179, 2678–2689.
    [Google Scholar]
  32. Rippka, R. ( 1988; ). Isolation and purification of cyanobacteria. Methods Enzymol 167, 3–27.
    [Google Scholar]
  33. Rutherford, A. W. & Kriger-Liszkay, A. ( 2001; ). Herbicide-induced oxidative stress in photosystem II. Trends Biochem Sci 26, 648–653.[CrossRef]
    [Google Scholar]
  34. Sauer, J., Schreiber, U., Schmid, R., Völker, U. & Forchhammer, K. ( 2001; ). Nitrogen starvation-induced chlorosis in Synechococcus PCC 7942. Low-level photosynthesis as a mechanism of long-term survival. Plant Physiol 126, 233–243.[CrossRef]
    [Google Scholar]
  35. Schreiber, U., Endo, T., Hualing, M. & Asada, K. ( 1995; ). Quenching analysis of chlorophyll fluorescence by the saturation pulse method: particular aspects relating to the study of eukaryotic algae and cyanobacteria. Plant Cell Physiol 36, 873–882.
    [Google Scholar]
  36. Schwarz, R. & Forchhammer, K. ( 2005; ). Acclimation of unicellular cyanobacteria to macronutrient deficiency: emergence of a complex network of cellular responses. Microbiology 151, 2503–2514.[CrossRef]
    [Google Scholar]
  37. Silva, P., Thompson, E., Bailey, S., Kruse, O., Mullineaux, C. W., Robinson, C., Mann, N. H. & Nixon, P. J. ( 2003; ). FtsH is involved in the early stages of repair of photosystem II in Synechocystis sp PCC 6803. Plant Cell 15, 2152–2164.[CrossRef]
    [Google Scholar]
  38. Tandeau de Marsac, N. & Houmard, J. ( 1988; ). Complementary chromatic adaptation: physiological conditions and action spectra. Methods Enzymol 167, 318–328.
    [Google Scholar]
  39. Vaughan, M. D., Sampson, P. B. & John, F. H. ( 2002; ). Methionine in and out of proteins: targets for drug design. Curr Med Chem 9, 385–409.[CrossRef]
    [Google Scholar]
  40. Voß, B., Gierga, G., Axmann, I. M. & Hess, W. R. ( 2007; ). A motif-based search in bacterial genomes identifies the ortholog of the small RNA Yfr1 in all lineages of cyanobacteria. BMC Genomics 8, 375 [CrossRef]
    [Google Scholar]
  41. You, C. H., Lu, H. Y., Sekowska, A., Fang, G., Wang, Y.-P., Gilles, A.-M. & Danchin, A. ( 2005; ). The two authentic methionine aminopeptidases genes are differentially expressed in Bacillus subtilis. BMC Microbiol 5, 57 [CrossRef]
    [Google Scholar]
  42. Zak, E., Norling, B., Maitra, R., Huang, F., Andersson, B. & Pakrasi, H. B. ( 2001; ). The initial steps of biogenesis of cyanobacterial photosystems occur in plasma membranes. Proc Natl Acad Sci U S A 98, 13443–13448.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.026351-0
Loading
/content/journal/micro/10.1099/mic.0.026351-0
Loading

Data & Media loading...

Supplements

16S rRNA tree of all cyanobacterial strains whose genomes are currently available from public databases, according to Voß (2007) [Voß, B., Gierga, G., Axmann, I. M. & Hess, W. R. (2007). A motif-based search in bacterial genomes identifies the ortholog of the small RNA Yfr1 in all lineages of cyanobacteria. , 375] [ PDF] (16 kb) Fluorescence microscopy of wild-type and MmapA cells stained with the LIVE/DEAD BacLight viability kit [ PDF] (71 kb)

PDF

16S rRNA tree of all cyanobacterial strains whose genomes are currently available from public databases, according to Voß (2007) [Voß, B., Gierga, G., Axmann, I. M. & Hess, W. R. (2007). A motif-based search in bacterial genomes identifies the ortholog of the small RNA Yfr1 in all lineages of cyanobacteria. , 375] [ PDF] (16 kb) Fluorescence microscopy of wild-type and MmapA cells stained with the LIVE/DEAD BacLight viability kit [ PDF] (71 kb)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error