
Full text loading...
Uropathogenic Escherichia coli (UPEC) can grow in environments with significantly elevated osmolarities, such as murine and human urinary tracts. OmpR is the response regulator part of a two-component OmpR–EnvZ regulatory system that responds to osmotic stresses. To determine the role of OmpR in UPEC survival, a ΔompR mutant was created in the UPEC clinical isolate NU149. The ΔompR mutant had a growth defect compared with the wild-type strain under osmotic stress conditions; this defect was complemented by the full-length ompR gene on a plasmid, but not with a mutant OmpR with an alanine substitution for aspartic acid at the phosphorylation site at position 55. Furthermore, the ΔompR mutant displayed up to 2-log reduction in bacterial cell numbers in murine bladders and kidneys compared with wild-type bacteria after 5 days of infection. The ability of the bacteria to survive was restored to wild-type levels when the ΔompR mutant strain was complemented with wild-type ompR, but not when the alanine-substituted ompR gene was used. This study has fulfilled molecular Koch's postulates by showing the pivotal role OmpR plays in UPEC survival within the murine urinary tract.
Article metrics loading...
Full text loading...
References
Data & Media loading...