1887

Abstract

Guanosine penta- and tetraphosphate [(p)ppGpp] are two unusual nucleotides implied in the bacterial stringent response. In many pathogenic bacteria, mutants unable to synthesize these molecules lose their virulence. In Gram-positive bacteria such as , the synthesis and degradation of (p)ppGpp mainly depend on the activity of a bifunctional enzyme, encoded by the gene. By analysing Δ and Δ (which encodes a protein harbouring a ppGpp synthetase activity) deletion mutants, we showed that RelA is by far the main system leading to (p)ppGpp production under our experimental conditions, and during the development of a stringent response induced by mupirocin. We also constructed a mutant (Δ) in which a small part of the gene (about 0.7 kbp) encoding the carboxy-terminal domain of the RelA protein was deleted. Both mutants were more resistant than the wild-type strain to 0.3 % bile salts, 25 % ethanol and acid (pH 2.3) challenges. Interestingly, the Δ mutant grew better than the two other strains in the presence of 1 mM HO, but did not display increased tolerance when subjected to lethal doses of HO (45 mM). By contrast, the Δ mutant was highly sensitive to 45 mM HO and displayed reduced growth in a medium containing 1 M NaCl. The two mutants also displayed contrasting virulence phenotypes towards larvae of the Greater Wax Moth infection model . Indeed, although the Δ mutant did not display any phenotype, the Δ mutant was more virulent than the wild-type strain. This virulent phenotype should stem from its increased ability to proliferate under oxidative environments.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.026146-0
2009-10-01
2024-12-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/10/3226.html?itemId=/content/journal/micro/10.1099/mic.0.026146-0&mimeType=html&fmt=ahah

References

  1. Abranches J., Martinez A. R., Kajfasz J. K., Chavez V., Garsin D. A., Lemos J. A. 2009; The molecular alarmone (p)ppGpp mediates stress responses, vancomycin tolerance and virulence in Enterococcus faecalis . J Bacteriol 191:2248–2256
    [Google Scholar]
  2. Arnaud M., Chastanet A., Débarbouillé M. 2004; New vector for efficient allelic replacement in naturally nontransformable low-GC-content, Gram-positive bacteria. Appl Environ Microbiol 70:6887–6891
    [Google Scholar]
  3. Benachour A., Muller C., Dabrowski-Coton M., Le Breton Y., Giard J. C., Rincé A., Auffray Y., Hartke A. 2005; The Enterococcus faecalis SigV protein is an extracytoplasmic function sigma factor contributing to survival following heat, acid, and ethanol treatments. J Bacteriol 187:1022–1035
    [Google Scholar]
  4. Bennett H. J., Pearce D. M., Glenn S., Taylor C. M., Kuhn M., Sonenshein A. L., Andrew P. W., Roberts I. S. 2007; Characterization of relA and codY mutants of Listeria monocytogenes: identification of the CodY regulon and its role in virulence. Mol Microbiol 63:1453–1467
    [Google Scholar]
  5. Bergin D., Reeves E. P., Renwick J., Wientjes F. B., Kavanagh K. 2005; Superoxide production in Galleria mellonella hemocytes: identification of proteins homologous to the NADPH oxidase complex of human neutrophils. Infect Immun 73:4161–4170
    [Google Scholar]
  6. Cashel M., Gentry D. R., Hernandez V. J., Vinella D. 1996; The stringent response. In Escherichia coli and Salmonella: Cellular and Molecular Biology , 2nd edn. pp 1458–1496 Edited by Neidhardt F. C., Curtiss R. I., Ingraham J. L., Lin E. C. C., Low K. B., Magasanik B., Reznikoff W. S., Riley M., Schaechter M., Umbarger H. E. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  7. Chopin A., Chopin M. C., Moillo-Batt A., Langella P. 1984; Two plasmid-determined restriction and modification systems in Streptococcus lactis . Plasmid 11:260–263
    [Google Scholar]
  8. Dahl J. L., Kraus C. N., Boshoff H. I., Doan B., Foley K., Avarbock D., Kaplan G., Mizrahi V., Rubin H., Barry C. E. III: 2003; The role of RelMtb-mediated adaptation to stationary phase in long-term persistence of Mycobacterium tuberculosis in mice. Proc Natl Acad Sci U S A 100:10026–10031
    [Google Scholar]
  9. Erickson D. L., Lines J. L., Pesci E. C., Venturi V., Storey D. G. 2004; Pseudomonas aeruginosa relA contributes to virulence in Drosophila melanogaster . Infect Immun 72:5638–5645
    [Google Scholar]
  10. Flahaut S., Boutibonnes P., Auffray Y. 1997; Enterococci in human environment. Can J Microbiol 43:699–708
    [Google Scholar]
  11. Gasson M. J. 1983; Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplast-induced curing. J Bacteriol 154:1–9
    [Google Scholar]
  12. Giard J. C., Laplace J. M., Rincé A., Pichereau V., Benachour A., Leboeuf C., Flahaut S., Auffray Y., Hartke A. 2001; The stress proteome of Enterococcus faecalis . Electrophoresis 22:2947–2954
    [Google Scholar]
  13. Giard J. C., Riboulet E., Verneuil N., Sanguinetti M., Auffray Y., Hartke A. 2006; Characterization of Ers, a PrfA-like regulator of Enterococcus faecalis . FEMS Immunol Med Microbiol 46:410–418
    [Google Scholar]
  14. Giraffa G. 2003; Functionality of enterococci in dairy products. Int J Food Microbiol 88:215–222
    [Google Scholar]
  15. Greenway D. L., England R. R. 1999; The intrinsic resistance of Escherichia coli to various antimicrobial agents requires ppGpp and σ S . Lett Appl Microbiol 29:323–326
    [Google Scholar]
  16. Haralalka S., Nandi S., Bhadra R. K. 2003; Mutation in the relA gene of Vibrio cholerae affects in vitro and in vivo expression of virulence factors. J Bacteriol 185:4672–4682
    [Google Scholar]
  17. Hugas M., Garriga M., Aymerich M. T. 2003; Functionality of enterococci in meat products. Int J Food Microbiol 88:223–233
    [Google Scholar]
  18. Inaoka T., Ochi K. 2002; RelA protein is involved in induction of genetic competence in certain Bacillus subtilis strains by moderating the level of intracellular GTP. J Bacteriol 184:3923–3930
    [Google Scholar]
  19. Jander G., Rahme L. G., Ausubel F. M. 2000; Positive correlation between virulence of Pseudomonas aeruginosa mutants in mice and insects. J Bacteriol 182:3843–3845
    [Google Scholar]
  20. Jin W., Kim H. K., Kim J. Y., Kang S. G., Lee S. H., Lee K. J. 2004a; Cephamycin C production is regulated by relA and rsh genes in Streptomyces clavuligerus ATCC 27064. J Biotechnol 114:81–87
    [Google Scholar]
  21. Jin W., Ryu Y. G., Kang S. G., Kim S. K., Saito N., Ochi K., Lee S. H., Lee K. J. 2004b; Two relA/ spoT homologous genes are involved in the morphological and physiological differentiation of Streptomyces clavuligerus . Microbiology 150:1485–1493
    [Google Scholar]
  22. Kasai K., Kanno T., Endo Y., Wakasa K., Tozawa Y. 2004; Guanosine tetra- and pentaphosphate synthase activity in chloroplasts of a higher plant: association with 70S ribosomes and inhibition by tetracycline. Nucleic Acids Res 32:5732–5741
    [Google Scholar]
  23. Le Breton Y., Boël G., Benachour A., Prévost H., Auffray Y., Rincé A. 2003; Molecular characterization of Enterococcus faecalis two-component signal transduction pathways related to environmental stresses. Environ Microbiol 5:329–337
    [Google Scholar]
  24. Lemos J. A., Brown T. A. Jr, Burne R. A. 2004; Effects of RelA on key virulence properties of planktonic and biofilm populations of Streptococcus mutans . Infect Immun 72:1431–1440
    [Google Scholar]
  25. Lemos J. A., Lin V. K., Nascimento M. M., Abranches J., Burne R. A. 2007; Three gene products govern (p)ppGpp production by Streptococcus mutans . Mol Microbiol 65:1568–1581
    [Google Scholar]
  26. Mechold U., Cashel M., Steiner K., Gentry D., Malke H. 1996; Functional analysis of a relA/spoT gene homolog from Streptococcus equisimilis . J Bacteriol 178:1401–1411
    [Google Scholar]
  27. Mechold U., Murphy H., Brown L., Cashel M. 2002; Intramolecular regulation of the opposing (p)ppGpp catalytic activities of Rel Seq , the Rel/Spo enzyme from Streptococcus equisimilis . J Bacteriol 184:2878–2888
    [Google Scholar]
  28. Mercenier A., Pavan S., Pot B. 2003; Probiotics as biotherapeutic agents: present knowledge and future prospects. Curr Pharm Des 9:175–191
    [Google Scholar]
  29. Mittenhuber G. 2001; Comparative genomics and evolution of genes encoding bacterial (p)ppGpp synthetases/hydrolases (the Rel, RelA and SpoT proteins. J Mol Microbiol Biotechnol 3:585–603
    [Google Scholar]
  30. Miyata S., Casey M., Frank D. W., Ausubel F. M., Drenkard E. 2003; Use of the Galleria mellonella caterpillar as a model host to study the role of the type III secretion system in Pseudomonas aeruginosa pathogenesis. Infect Immun 71:2404–2413
    [Google Scholar]
  31. Mostertz J., Scharf C., Hecker M., Homuth G. 2004; Transcriptome and proteome analysis of Bacillus subtilis gene expression in response to superoxide and peroxide stress. Microbiology 150:497–512
    [Google Scholar]
  32. Muller C., Le Breton Y., Morin T., Benachour A., Auffray Y., Rincé A. 2006; The response regulator CroR modulates expression of the secreted stress induced SalB protein in Enterococcus faecalis . J Bacteriol 188:2636–2645
    [Google Scholar]
  33. Muller C., Sanguinetti M., Riboulet E., Hébert L., Posteraro B., Fadda G., Auffray Y., Rincé A. 2008; Characterization of two signal transduction systems involved in intracellular macrophage survival and environmental stress response in Enterococcus faecalis . J Mol Microbiol Biotechnol 14:59–66
    [Google Scholar]
  34. Murray K. D., Bremer H. 1996; Control of spoT-dependent ppGpp synthesis and degradation in Escherichia coli . J Mol Biol 259:41–57
    [Google Scholar]
  35. Nanamiya H., Kasai K., Nozawa A., Yun C. S., Narisawa T., Murakami K., Natori Y., Kawamura F., Tozawa Y. 2008; Identification and functional analysis of novel (p)ppGpp synthetase genes in Bacillus subtilis . Mol Microbiol 67:291–304
    [Google Scholar]
  36. Noskin G. A., Till M., Patterson B. K., Clarke J. T., Warren J. R. 1991; High level gentamycin resistance in Enterococcus faecalis bacteremia. J Infect Dis 164:1212–1215
    [Google Scholar]
  37. Okada Y., Makino S., Tobe T., Okada N., Yamazaki S. 2002; Cloning of rel from Listeria monocytogenes as an osmotolerance involvement gene. Appl Environ Microbiol 68:1541–1547
    [Google Scholar]
  38. Park S. Y., Kim K. M., Lee J. H., Seo S. J., Lee I. H. 2007; Extracellular gelatinase of Enterococcus faecalis destroys a defense system in insect hemolymph and human serum. Infect Immun 75:1861–1869
    [Google Scholar]
  39. Paulsen I. T., Banerjei L., Myers G. S., Nelson K. E., Seshadri R., Read T. D., Fouts D. E., Eisen J. A., Gill S. R. other authors 2003; Role of mobile DNA in the evolution of vancomycin-resistant Enterococcus faecalis . Science 299:2071–2074
    [Google Scholar]
  40. Pichereau V., Bourot S., Flahaut S., Blanco C., Auffray Y., Bernard T. 1999; The osmoprotectant glycine betaine inhibits salt-induced cross-tolerance towards lethal treatment in Enterococcus faecalis . Microbiology 145:427–435
    [Google Scholar]
  41. Pizarro-Cerda J., Tedin K. 2004; The bacterial signal molecule, ppGpp, regulates Salmonella virulence gene expression. Mol Microbiol 52:1827–1844
    [Google Scholar]
  42. Rallu F., Gruss A., Ehrlich S. D., Maguin E. 2000; Acid- and multistress-resistant mutant of Lactococcus lactis: identification of intracellular stress signals. Mol Microbiol 35:517–528
    [Google Scholar]
  43. Sahm D. F., Kissinger J., Gilmore M. S., Murray P. R., Mulder R., Solliday J., Clarke B. 1989; In vitro susceptibility studies of vancomycin-resistant Enterococcus faecalis . Antimicrob Agents Chemother 33:1588–1591
    [Google Scholar]
  44. Schaberg D. R., Culver D. H., Gaynes R. P. 1991; Major trends in microbial etiology of nosocomial infection. Am J Med 91:72S–75S
    [Google Scholar]
  45. Seed K. D., Dennis J. J. 2008; Development of Galleria mellonella as an alternative infection model for the Burkholderia cepacia complex. Infect Immun 76:1267–1275
    [Google Scholar]
  46. Sherman J. M. 1937; The streptococci. Bacteriol Rev 1:3–97
    [Google Scholar]
  47. Silva A. J., Benitez J. A. 2006; A Vibrio cholerae relaxed ( relA) mutant expresses major virulence factors, exhibits biofilm formation and motility, and colonizes the suckling mouse intestine. J Bacteriol 188:794–800
    [Google Scholar]
  48. Sun J., Hesketh A., Bibb M. 2001; Functional analysis of relA and rshA, two relA/spoT homologues of Streptomyces coelicolor A3(2. J Bacteriol 183:3488–3498
    [Google Scholar]
  49. Taylor C. M., Beresford M., Epton H. A., Sigee D. C., Shama G., Andrew P. W., Roberts I. S. 2002; Listeria monocytogenes relA and hpt mutants are impaired in surface-attached growth and virulence. J Bacteriol 184:621–628
    [Google Scholar]
  50. Verneuil N., Sanguinetti M., Le Breton Y., Posteraro B., Fadda G., Auffray Y., Hartke A., Giard J. C. 2004; Effects of the Enterococcus faecalis hypR gene encoding a new transcriptional regulator on oxidative stress response and intracellular survival within macrophages. Infect Immun 72:4424–4431
    [Google Scholar]
  51. Verneuil N., Rincé A., Sanguinetti M., Posteraro B., Fadda G., Auffray Y., Hartke A., Giard J. C. 2005; Contribution of a PerR-like regulator to the oxidative-stress response and virulence of Enterococcus faecalis . Microbiology 151:3997–4004
    [Google Scholar]
  52. Wendrich T. M., Marahiel M. A. 1997; Cloning and characterization of a relA/spoT homologue from Bacillus subtilis . Mol Microbiol 26:65–79
    [Google Scholar]
  53. Wendrich T. M., Blaha G., Wilson D. N., Marahiel M. A., Nierhaus K. H. 2002; Dissection of the mechanism for the stringent factor RelA. Mol Cell 10:779–788
    [Google Scholar]
  54. Yang X., Ishiguro E. E. 2003; Temperature-sensitive growth and decreased thermotolerance associated with relA mutations in Escherichia coli . J Bacteriol 185:5765–5771
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.026146-0
Loading
/content/journal/micro/10.1099/mic.0.026146-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error