1887

Abstract

The outermost layer of the cell wall is enriched with mannosylated glycoproteins. We have used a range of isogenic glycosylation mutants of , which are defective to varying degrees in cell wall protein mannosylation, to investigate the role of the outermost layer of the yeast cell wall in mediating the fungicidal action of the cationic, -helical antimicrobial peptide dermaseptin S3(1-16) [DsS3(1-16)]. The degree of phosphomannan loss, and concomitant reduction in surface negative charge, from the series of glycosylation mutants correlated with reduced levels of peptide binding to the cells. In turn, the reduced peptide binding correlated with enhanced resistance to DsS3(1-16). To ascertain whether DsS3(1-16) binds to negatively charged phosphate, we studied the effect of exogenous glucosamine 6-phosphate, and glucosamine hydrochloride as a negative control, on the antifungal efficacy of DsS3(1-16). Glucosamine 6-phosphate retarded the efficacy of DsS3(1-16), and this was attributed to the presence of phosphate, because addition of identical concentrations of glucosamine hydrochloride had little detrimental effect on peptide efficacy. Fluorescence microscopy with DsS3(1-16) tagged with fluorescein revealed that the peptide binds to the outer surface of the yeast cell, supporting our previous conclusion that the presence of exterior phosphomannan is a major determinant of the antifungal potency of DsS3(1-16). The binding of the peptide to the cell surface was a transient event that was followed by apparent localization of DsS3(1-16) in the vacuole or dissemination throughout the entire cytosol. The presence of glucosamine 6-phosphate clearly reduced the proportion of cells in the population that showed complete cytosolic staining, implying that the binding and entry of the peptide into the cytosol is significantly reduced due to the exogenous phosphate sequestering the peptide and reducing the amount of peptide able to bind to the surface phosphomannan. In conclusion, we present evidence that an antimicrobial peptide, similar to those employed by cells of the human immune system, has evolved to recognize molecular patterns on the surface of pathogens in order to maximize efficacy.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.026120-0
2009-04-01
2019-11-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/4/1058.html?itemId=/content/journal/micro/10.1099/mic.0.026120-0&mimeType=html&fmt=ahah

References

  1. Ballou, C. E. ( 1990; ). Isolation, characterization, and properties of Saccharomyces cerevisiae mnn mutants with nonconditional protein glycosylation defects. Methods Enzymol 185, 440–470.
    [Google Scholar]
  2. Bates, S., MacCallum, D. M., Bertram, G., Munro, C. A., Hughes, H. B., Buurman, E. T., Brown, A. J. P., Odds, F. C. & Gow, N. A. R. ( 2005; ). Candida albicans Pmr1p, a secretory pathway P-type Ca2+/Mn2+-ATPase, is required for glycosylation and virulence. J Biol Chem 280, 23408–23415.[CrossRef]
    [Google Scholar]
  3. Bates, S., Hughes, H. B., Munro, C. A., Thomas, W. P. H., MacCallum, D. M., Bertram, G., Atrih, A., Ferguson, M. A. J., Brown, A. J. P. & other authors ( 2006; ). Outer chain N-glycans are required for cell wall integrity and virulence of Candida albicans. J Biol Chem 281, 90–98.[CrossRef]
    [Google Scholar]
  4. Bom, I. J., Klis, F. M., de Nobel, H. & Brul, S. ( 2001; ). A new strategy for inhibition of the spoilage yeasts Saccharomyces cerevisiae and Zygosaccharomyces bailii based on combination of a membrane-active peptide with an oligosaccharide that leads to an impaired glycosylphosphatidylinositol (GPI)-dependent yeast wall protein layer. FEMS Yeast Res 1, 187–194.
    [Google Scholar]
  5. Bowdish, D. M., Davidson, D. J. & Hancock, R. E. ( 2005; ). A re-evaluation of the role of host defence peptides in mammalian immunity. Curr Protein Pept Sci 6, 35–51.[CrossRef]
    [Google Scholar]
  6. Brand, A., MacCallum, D. M., Brown, A. J. P., Gow, N. A. R. & Odds, F. C. ( 2004; ). Ectopic expression of URA3 can influence the virulence phenotypes and proteome of Candida albicans but can be overcome by targeted reintegration of URA3 at the RPS10 locus. Eukaryot Cell 3, 900–909.[CrossRef]
    [Google Scholar]
  7. Brötz, H., Bierbaum, G., Leopold, K., Reynolds, P. E. & Sahl, H.-G. ( 1998; ). The lantibiotic mersacidin inhibits peptidoglycan synthesis by targeting lipid II. Antimicrob Agents Chemother 42, 154–160.
    [Google Scholar]
  8. De Nobel, J. G., Klis, F. M., Priem, J., Munnik, T. & van den Ende, H. ( 1990; ). The glucanase-soluble mannoproteins limit cell wall porosity in Saccharomyces cerevisiae. Yeast 6, 491–499.[CrossRef]
    [Google Scholar]
  9. Dielbandhoesing, S. K., Zhang, H., Caro, L. H. P., van der Vaart, J. M., Klis, F. M., Verrips, C. T. & Brul, S. ( 1998; ). Specific cell wall proteins confer resistance to nisin upon yeast cells. Appl Environ Microbiol 64, 4047–4052.
    [Google Scholar]
  10. Durr, G., Strayle, J., Plemper, R., Elbs, S., Klee, S. K., Catty, P., Wolf, D. H. & Rudolph, H. K. ( 1998; ). The medial-Golgi ion pump Pmr1 supplies the yeast secretory pathway with Ca2+ and Mn2+ required for glycosylation, sorting, and endoplasmic reticulum-associated protein degradation. Mol Biol Cell 9, 1149–1162.[CrossRef]
    [Google Scholar]
  11. Edmond, M. B., Wallace, S. E., McClish, D. K., Pfaller, M. A., Jones, R. N. & Wenzel, R. P. ( 1999; ). Nosocomial bloodstream infections in United States hospitals: a three-year analysis. Clin Infect Dis 29, 239–244.[CrossRef]
    [Google Scholar]
  12. Enoch, D. A., Ludlam, H. A. & Brown, N. M. ( 2006; ). Invasive fungal infections: a review of epidemiology and management options. J Med Microbiol 55, 809–818.[CrossRef]
    [Google Scholar]
  13. Friedrich, C. L., Moyles, D., Beveridge, T. J. & Hancock, R. E. W. ( 2000; ). Antibacterial action of structurally diverse cationic peptides on Gram positive bacteria. Antimicrob Agents Chemother 44, 2086–2092.[CrossRef]
    [Google Scholar]
  14. Groll, A. H., Shah, P. M., Mentzei, C., Schneider, M., Just-Neubling, G. & Heubner, K. ( 1996; ). Trends in the postmortem epidemiology of invasive fungal infections at a university hospital. J Infect 33, 23–32.[CrossRef]
    [Google Scholar]
  15. Gudlaugsson, O., Gillespie, S., Lee, K., Vande Berg, J., Hu, J., Messer, S., Herwaldt, L., Pfaller, M. & Diekema, D. ( 2003; ). Attributable mortality of nosocomial candidemia, revisited. Clin Infect Dis 37, 1172–1177.[CrossRef]
    [Google Scholar]
  16. Hancock, R. E. W. & Scott, M. G. ( 2000; ). The role of antimicrobial peptides in animal defenses. Proc Natl Acad Sci U S A 97, 8856–8861.[CrossRef]
    [Google Scholar]
  17. Haughland, R. P. ( 2005; ). Viability and cytotoxicity assay reagents. In Molecular Probes – The Handbook, 10th edn, pp. 704–715. Edited by M. T. Z. Spence. Carlsbad, CA: Invitrogen.
  18. Hobson, R. P., Munro, C. A., Bates, S., MacCallum, D. M., Cutler, J. E., Heinsbroek, S. E. M., Brown, G. D., Odds, F. C. & Gow, N. A. R. ( 2004; ). Loss of cell wall mannosylphosphate in Candida albicans does not influence macrophage recognition. J Biol Chem 279, 39628–39635.[CrossRef]
    [Google Scholar]
  19. Ibeas, J. I., Lee, H., Damsz, B., Prasad, D. T., Pardo, J. M., Hasegawa, P. M., Bressan, R. A. & Narasimhan, M. L. ( 2000; ). Fungal cell wall phosphomannans facilitate the toxic activity of a plant PR-5 protein. Plant J 23, 375–383.[CrossRef]
    [Google Scholar]
  20. Klis, F. M., de Groot, P. & Hellingwerf, K. ( 2001; ). Molecular organization of the cell wall of Candida albicans. Med Mycol 39 (Suppl. 1), 1–8.[CrossRef]
    [Google Scholar]
  21. Klis, F. M., Mol, P., Hellingwerf, K. & Brul, S. ( 2002; ). Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiol Rev 26, 239–256.[CrossRef]
    [Google Scholar]
  22. Lehle, L., Eiden, A., Lehnert, K., Haselbeck, A. & Kopetzki, E. ( 1995; ). Glycoprotein biosynthesis in Saccharomyces cerevisiae: ngd29, an N-glycosylation mutant allelic to och1 having a defect in the initiation of outer chain formation. FEBS Lett 370, 41–45.[CrossRef]
    [Google Scholar]
  23. Lesage, G. & Bussey, H. ( 2006; ). Cell wall assembly in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 70, 317–343.[CrossRef]
    [Google Scholar]
  24. Lin, S. J., Schranz, J. & Teutsch, S. M. ( 2001; ). Aspergillosis case-fatality rate: systematic review of the literature. Clin Infect Dis 32, 358–366.[CrossRef]
    [Google Scholar]
  25. Makrantoni, V., Dennison, P., Stark, M. J. R. & Coote, P. J. ( 2007; ). A novel role for the yeast protein kinase Dbf2p in vacuolar H+-ATPase function and sorbic acid stress tolerance. Microbiology 153, 4016–4026.[CrossRef]
    [Google Scholar]
  26. Mor, A. & Nicolas, P. ( 1994; ). Isolation and structure of novel defensive peptides from frog skin. Eur J Biochem 219, 145–154.[CrossRef]
    [Google Scholar]
  27. Mor, A., Hani, K. & Nicolas, P. ( 1994; ). The vertebrate peptide antibiotics dermaseptins have overlapping structural features but target specific microorganisms. J Biol Chem 269, 31635–31641.
    [Google Scholar]
  28. Mora-Montes, H. M., Bates, S., Netea, M. G., Díaz-Jiménez, D. F., López-Romero, E., Zinker, S., Ponce-Noyola, P., Kullberg, B. J., Brown, A. J. & other authors ( 2007; ). Endoplasmic reticulum α-glycosidases of Candida albicans are required for N glycosylation, cell wall integrity, and normal host–fungus interaction. Eukaryot Cell 6, 2184–2193.[CrossRef]
    [Google Scholar]
  29. Morton, C. O., Hayes, A., Wilson, M., Rash, B. M., Oliver, S. G. & Coote, P. ( 2007a; ). Global screening and transcript analysis outlines the inhibitory mode(s) of action of two amphibian-derived, α-helical, cationic peptides on Saccharomyces cerevisiae. Antimicrob Agents Chemother 51, 3948–3959.[CrossRef]
    [Google Scholar]
  30. Morton, C. O., Costa dos Santos, S. & Coote, P. ( 2007b; ). An amphibian-derived, cationic, α-helical antimicrobial peptide kills yeast by caspase-independent but AIF-dependent programmed cell death. Mol Microbiol 65, 494–507.[CrossRef]
    [Google Scholar]
  31. Munro, C. A., Bates, S., Buurman, E. T., Hughes, H. B., MacCallum, D. M., Bertram, G., Atrih, A., Ferguson, M. A. J., Bain, J. M. & other authors ( 2005; ). Mnt1p and Mnt2p of Candida albicans are partially redundant α-1,2-mannosyltransferases that participate in O-linked mannosylation and are required for adhesion and virulence. J Biol Chem 280, 1051–1060.[CrossRef]
    [Google Scholar]
  32. Netea, M. G., Gow, N. A. R., Munro, C. A., Bates, S., Collins, C., Ferwerda, G., Hobson, R. P., Bertram, G., Hughes, H. B. & other authors ( 2006; ). Immune sensing of Candida albicans requires cooperative recognition of mannans and glucans by lectin and Toll-like receptors. J Clin Invest 116, 1642–1650.[CrossRef]
    [Google Scholar]
  33. Netea, M. G., Brown, G. D., Kullberg, B. J. & Gow, N. A. R. ( 2008; ). An integrated model of pattern recognition of Candida albicans in innate immunity. Nat Rev Microbiol 6, 67–78.[CrossRef]
    [Google Scholar]
  34. Nguyen, T. H., Fleet, G. H. & Rogers, P. L. ( 1998; ). Composition of the cell walls of several yeast species. Appl Microbiol Biotechnol 50, 206–212.[CrossRef]
    [Google Scholar]
  35. Odani, T., Shimma, Y., Wang, X. H. & Jigami, Y. ( 1997; ). Mannosylphosphate transfer to cell wall mannan is regulated by the transcriptional level of the MNN4 gene in Saccharomyces cerevisiae. FEBS Lett 420, 186–190.[CrossRef]
    [Google Scholar]
  36. Osaki, T., Omotezako, M., Nagayama, R., Hirata, M., Iwanaga, S., Kasahara, J., Hattori, J., Ito, I., Sugiyama, H. & Kawabata, S. ( 1999; ). Horseshoe crab hemocyte-derived antimicrobial polypeptides, tachystatins, with sequence similarity to spider neurotoxins. J Biol Chem 274, 26172–26178.[CrossRef]
    [Google Scholar]
  37. Peschel, A., Otto, M., Jack, R. W., Kalbacher, H., Jung, G. & Gotz, F. ( 1999; ). Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J Biol Chem 274, 8405–8410.[CrossRef]
    [Google Scholar]
  38. van der Vaart, J. M., Caro, L. H., Chapman, J. W., Klis, F. M. & Verrips, C. T. ( 1995; ). Identification of three mannoproteins in the cell wall of Saccharomyces cerevisiae. J Bacteriol 177, 3104–3110.
    [Google Scholar]
  39. Vecchiarelli, A., Puliti, M., Torosantucci, A., Cassone, A. & Bistoni, F. ( 1991; ). In vitro production of tumor necrosis factor by murine splenic macrophages stimulated with mannoprotein constituents of Candida albicans cell wall. Cell Immunol 134, 65–76.[CrossRef]
    [Google Scholar]
  40. Wisplinghoff, H., Bischoff, T., Tallent, S. M., Seifert, H., Wenzel, R. P. & Edmond, M. B. ( 2004; ). Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis 39, 309–317.[CrossRef]
    [Google Scholar]
  41. Yeaman, M. R. & Yount, N. Y. ( 2003; ). Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 55, 27–55.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.026120-0
Loading
/content/journal/micro/10.1099/mic.0.026120-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error