1887

Abstract

Mitochondria of eukaryotic organisms contain populations of DNA molecules that are packed into higher-order structures called mitochondrial nucleoids (mt-nucleoids). In , the compaction of mitochondrial DNA (mtDNA) into mt-nucleoids is mediated primarily by the high-mobility group (HMG) box-containing protein Abf2, which is an important player in stabilization and metabolism of mtDNA. Although it is evident that analogous proteins must exist in other yeast species, an apparently fast divergence rate has precluded their identification, characterization and comparative analysis. Using analysis of the complete genome sequence of the pathogenic yeast we predicted that the ORF 19.400/19.8030 assigned as encodes a putative mitochondrial HMG box-containing protein. In contrast to Abf2p, which contains two HMG boxes, Gcf1p contains only one C-terminal HMG box. In addition, it contains one putative coiled-coil domain with a potential role in protein dimerization. Fluorescence microscopy analysis of a C-terminally tagged Gcf1p with green fluorescent protein (GFP) revealed its mitochondrial localization in both heterologous () and native () hosts. Biochemical analyses of DNA-binding properties indicate that Gcf1p is, similarly to Abf2p, a non-specific DNA-binding protein. To analyse the role of Gcf1p in mtDNA metabolism, we constructed strains lacking one functional allele of the gene and carrying one allele under the control of the promoter. Under repressible conditions this strain exhibited a more than 3000-fold decrease in levels of mRNA, which was correlated with a substantial decrease in the number of mtDNA copies as well as recombination intermediates. The dramatic effect of reduced levels of Gcf1p on mtDNA metabolism indicates that the protein is involved in essential molecular transactions that relate to the mitochondrial genome.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.025759-0
2009-04-01
2019-10-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/4/1226.html?itemId=/content/journal/micro/10.1099/mic.0.025759-0&mimeType=html&fmt=ahah

References

  1. Baxevanis, A. D. & Landsman, D. ( 1995; ). The HMG-1 box protein family: classification and functional relationships. Nucleic Acids Res 23, 1604–1613.[CrossRef]
    [Google Scholar]
  2. Brewer, B. J. & Fangman, W. L. ( 1987; ). The localization of replication origins on ARS plasmids in S. cerevisiae. Cell 51, 463–471.[CrossRef]
    [Google Scholar]
  3. Brewer, L. R., Friddle, R., Noy, A., Baldwin, E., Martin, S. S., Corzett, M., Balhorn, R. & Baskin, R. J. ( 2003; ). Packaging of single DNA molecules by the yeast mitochondrial protein Abf2p. Biophys J 85, 2519–2524.[CrossRef]
    [Google Scholar]
  4. Care, R. S., Trevethick, J., Binley, K. M. & Sudbery, P. E. ( 1999; ). The MET3 promoter: a new tool for Candida albicans molecular genetics. Mol Microbiol 34, 792–798.[CrossRef]
    [Google Scholar]
  5. Caron, F., Jacq, C. & Rouviere-Yaniv, J. ( 1979; ). Characterization of a histone-like protein extracted from yeast mitochondria. Proc Natl Acad Sci U S A 76, 4265–4269.[CrossRef]
    [Google Scholar]
  6. Chen, X. J. & Butow, R. A. ( 2005; ). The organization and inheritance of the mitochondrial genome. Nat Rev Genet 6, 815–825.[CrossRef]
    [Google Scholar]
  7. Chen, X. J., Wang, X., Kaufman, B. A. & Butow, R. A. ( 2005; ). Aconitase couples metabolic regulation to mitochondrial DNA maintenance. Science 307, 714–717.[CrossRef]
    [Google Scholar]
  8. Church, G. M. & Gilbert, W. ( 1984; ). Genomic sequencing. Proc Natl Acad Sci U S A 81, 1991–1995.[CrossRef]
    [Google Scholar]
  9. Claros, M. G. & Vincens, P. ( 1996; ). Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem 241, 779–786.[CrossRef]
    [Google Scholar]
  10. Daum, G., Böhni, P. C. & Schatz, G. ( 1982; ). Import of proteins into mitochondria. Cytochrome b 2 and cytochrome c peroxidase are located in the intermembrane space of yeast mitochondria. J Biol Chem 257, 13028–13033.
    [Google Scholar]
  11. De Backer, M. D., Maes, D., Vandoninck, S., Logghe, M., Contreras, R. & Luyten, W. H. M. L. ( 1999; ). Transformation of Candida albicans by electroporation. Yeast 15, 1609–1618.[CrossRef]
    [Google Scholar]
  12. Defontaine, A., Lecocq, F. M. & Hallet, J. N. ( 1991; ). A rapid miniprep method for the preparation of yeast mitochondrial DNA. Nucleic Acids Res 19, 185 [CrossRef]
    [Google Scholar]
  13. Dequard-Chablat, M. & Allandt, C. ( 2002; ). Two copies of mthmg1, encoding a novel mitochondrial HMG-like protein, delay accumulation of mitochondrial DNA deletions in Podospora anserina. Eukaryot Cell 1, 503–513.[CrossRef]
    [Google Scholar]
  14. Diffley, J. F. & Stillman, B. ( 1991; ). A close relative of the nuclear, chromosomal high-mobility group protein HMG1 in yeast mitochondria. Proc Natl Acad Sci U S A 88, 7864–7868.[CrossRef]
    [Google Scholar]
  15. Diffley, J. F. & Stillman, B. ( 1992; ). DNA binding properties of an HMG1-related protein from yeast mitochondria. J Biol Chem 267, 3368–3374.
    [Google Scholar]
  16. Friddle, R. W., Klare, J. E., Martin, S. S., Corzett, M., Balhorn, R., Baldwin, E. P., Baskin, R. J. & Noy, A. ( 2004; ). Mechanism of DNA compaction by yeast mitochondrial protein Abf2p. Biophys J 86, 1632–1639.[CrossRef]
    [Google Scholar]
  17. Gietz, R. D. & Schiestl, R. H. ( 1995; ). Transforming yeast with DNA. Methods Mol Cell Biol 5, 255–269.
    [Google Scholar]
  18. Kao, L. R., Megraw, T. L. & Chae, C. B. ( 1993; ). Essential role of the HMG domain in the function of yeast mitochondrial histone HM: functional complementation of HM by the nuclear nonhistone protein NHP6A. Proc Natl Acad Sci U S A 90, 5598–5602.[CrossRef]
    [Google Scholar]
  19. Kim, S., Wolyniak, M. J., Staab, J. F. & Sundstrom, P. ( 2007; ). A 368-base-pair cis-acting HWP1 promoter region, HCR, of Candida albicans confers hypha-specific gene regulation and binds architectural transcription factors Nhp6 and Gcf1p. Eukaryot Cell 6, 693–709.[CrossRef]
    [Google Scholar]
  20. Kreuzer, K. N., Saunders, M., Weislo, L. J. & Kreuzer, H. W. E. ( 1995; ). Recombination-dependent DNA replication stimulated by double-strand breaks in bacteriophage T4. J Bacteriol 177, 6844–6853.
    [Google Scholar]
  21. Kucej, M. & Butow, R. A. ( 2007; ). Evolutionary tinkering with mitochondrial nucleoids. Trends Cell Biol 17, 586–592.[CrossRef]
    [Google Scholar]
  22. Kucej, M., Kucejova, B., Subramanian, R., Chen, X. J. & Butow, R. A. ( 2008; ). Mitochondrial nucleoids undergo remodeling in response to metabolic cues. J Cell Sci 121, 1861–1868.[CrossRef]
    [Google Scholar]
  23. Kuroiwa, T. ( 1982; ). Mitochondrial nuclei. Int Rev Cytol 75, 1–59.
    [Google Scholar]
  24. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.[CrossRef]
    [Google Scholar]
  25. Letunic, I., Copley, R. R., Pils, B., Pinkert, S., Schultz, J. & Bork, P. ( 2006; ). SMART 5: domains in the context of genomes and networks. Nucleic Acids Res 34, D257–D260.[CrossRef]
    [Google Scholar]
  26. Ling, F., Hori, A. & Shibata, T. ( 2007; ). DNA recombination-initiation plays a role in the extremely biased inheritance of yeast [rho ] mitochondrial DNA that contains the replication origin ori5. Mol Cell Biol 27, 1133–1145.[CrossRef]
    [Google Scholar]
  27. MacAlpine, D. M., Perlman, P. S. & Butow, R. A. ( 1998; ). The high mobility group protein Abf2p influences the level of yeast mitochondrial DNA recombination intermediates in vivo. Proc Natl Acad Sci U S A 95, 6739–6743.[CrossRef]
    [Google Scholar]
  28. MacAlpine, D. M., Perlman, P. S. & Butow, R. A. ( 2000; ). The numbers of individual mitochondrial DNA molecules and mitochondrial DNA nucleoids in yeast are co-regulated by the general amino acid control pathway. EMBO J 19, 767–775.[CrossRef]
    [Google Scholar]
  29. Manchekar, M., Scissum-Gunn, K., Song, D., Khazi, F., McLean, S. L. & Nielsen, B. L. ( 2006; ). DNA recombination activity in soybean mitochondria. J Mol Biol 356, 288–299.[CrossRef]
    [Google Scholar]
  30. Megraw, T. L. & Chae, C. B. ( 1993; ). Functional complementarity between the HMG1-like yeast mitochondrial histone HM and the bacterial histone-like protein HU. J Biol Chem 268, 12758–12763.
    [Google Scholar]
  31. Miyakawa, I., Fumoto, S., Kuroiwa, T. & Sando, N. ( 1995; ). Characterization of DNA-binding proteins involved in the assembly of mitochondrial mt-nucleoids in the yeast Saccharomyces cerevisiae. Plant Cell Physiol 36, 1179–1188.
    [Google Scholar]
  32. Miyakawa, I., Okazaki-Higashi, C., Higashi, T., Furutani, Y. & Sando, N. ( 1996; ). Isolation and characterization of mitochondrial mt-nucleoids from the yeast Pichia jadinii. Plant Cell Physiol 37, 816–824.[CrossRef]
    [Google Scholar]
  33. Miyakawa, I., Kitamura, Y., Jyozaki, T., Sato, H. & Umezaki, T. ( 2000; ). Simple detection of a yeast mitochondrial DNA-binding protein, Abf2p, on SDS-DNA gels. J Gen Appl Microbiol 46, 311–316.[CrossRef]
    [Google Scholar]
  34. Miyakawa, I., Okamuro, A., Kinsky, S., Visacka, K., Tomaska, L. & Nosek, J. ( 2009; ). Mitochondrial nucleoids from the yeast Candida parapsilosis: expansion of the repertoire of proteins associated with mitochondrial DNA. Microbiology 155, (in press).
    [Google Scholar]
  35. Mosig, G. ( 1998; ). Recombination and recombination-dependent DNA replication in bacteriophage T4. Annu Rev Genet 32, 379–413.[CrossRef]
    [Google Scholar]
  36. Nicholas, K. B., Nicholas, H. B., Jr & Deerfield, D. W., II ( 1997; ). GeneDoc: analysis and visualization of genetic variation. EMBnet News 4, 14––17.
    [Google Scholar]
  37. Niedenthal, R. K., Riles, L., Johnston, M. & Hegemann, J. H. ( 1996; ). Green fluorescent protein as a marker for gene expression and subcellular localization in budding yeast. Yeast 12, 773–786.[CrossRef]
    [Google Scholar]
  38. Nosek, J., Tomaska, L., Bolotin-Fukuhara, M. & Miyakawa, I. ( 2006; ). Structure and dynamics of the mitochondrial chromosome: an insight from complete yeast genomes analysis. FEMS Yeast Res 6, 356–370.[CrossRef]
    [Google Scholar]
  39. Ogur, M., St. John, R. & Nagai, S. ( 1957; ). Tetrazolium overlay technique for population studies of respiration deficiency in yeast. Science 125, 928–929.[CrossRef]
    [Google Scholar]
  40. Okamoto, K., Perlman, P. S. & Butow, R. A. ( 1998; ). The sorting of mitochondrial DNA and mitochondrial proteins in zygotes: preferential transmission of mitochondrial DNA to the medial bud. J Cell Biol 142, 613–623.[CrossRef]
    [Google Scholar]
  41. Parisi, M. A., Xu, B. & Clayton, D. A. ( 1993; ). A human mitochondrial transcriptional activator can functionally replace a yeast mitochondrial HMG-box protein both in vivo and in vitro. Mol Cell Biol 13, 1951–1961.
    [Google Scholar]
  42. Sambrook, J. & Russell, D. W. ( 2001; ). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  43. Sasaki, N., Kuroiwa, H., Nishitani, C., Takano, H., Higashiyama, T., Kobayashi, T., Shirai, Y., Sakai, A., Kawano, S. & other authors ( 2003; ). Glom is a novel mitochondrial DNA packaging protein in Physarum polycephalum and causes intense chromatin condensation without suppressing DNA functions. Mol Biol Cell 14, 4758–4769.[CrossRef]
    [Google Scholar]
  44. Sedman, T., Jõers, P., Kuusk, S. & Sedman, J. ( 2005; ). Helicase Hmi1 stimulates the synthesis of concatemeric mitochondrial DNA molecules in yeast Saccharomyces cerevisiae. Curr Genet 47, 213–222.[CrossRef]
    [Google Scholar]
  45. Stigter, D. ( 2004; ). Packaging of single DNA molecules by the yeast mitochondrial protein Abf2p: reinterpretation of recent single molecule experiments. Biophys Chem 110, 171–178.[CrossRef]
    [Google Scholar]
  46. Tamura, K., Dudley, J., Nei, M. & Kumar, S. ( 2007; ). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24, 1596–1599.[CrossRef]
    [Google Scholar]
  47. Umezaki, T. & Miyakawa, I. ( 2002; ). Use of SDS-DNA PAGE for detection of mitochondrial Abf2p-like proteins and mitochondrial nuclease in Saccharomyces yeasts and Arxiozyma telluris. Cytologia (Tokyo) 67, 423–428.[CrossRef]
    [Google Scholar]
  48. Wirsching, S., Michel, S. & Morschhäuser, J. ( 2000; ). Targeted gene disruption in Candida albicans wild-type strains: the role of the MDR1 gene in fluconazole resistance of clinical Candida albicans isolates. Mol Microbiol 36, 856–865.[CrossRef]
    [Google Scholar]
  49. Zelenaya-Troitskaya, O., Newman, S. M., Okamoto, K., Perlman, P. S. & Butow, R. A. ( 1998; ). Functions of the high mobility group protein, Abf2p, in mitochondrial DNA segregation, recombination and copy number in Saccharomyces cerevisiae. Genetics 148, 1763–1776.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.025759-0
Loading
/content/journal/micro/10.1099/mic.0.025759-0
Loading

Data & Media loading...

[PDF file]

PDF

[PDF file]

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error