1887

Abstract

-Inositol (inositol) is an essential nutrient that is used for building phosphatidylinositol and its derivatives in eukaryotes and even in some eubacteria such as the mycobacteria. As a consequence, fungal, protozoan and mycobacterial pathogens must be able to acquire inositol in order to proliferate and cause infection in their hosts. There are two primary mechanisms for acquiring inositol. One is to synthesize inositol from glucose 6-phosphate using two sequentially acting enzymes: inositol-3-phosphate synthase (Ino1p) converts glucose 6-phosphate to inositol 3-phosphate, and then inositol monophosphatase (IMPase) dephosphorylates inositol 3-phosphate to generate inositol. The other mechanism is to import inositol from the environment via inositol transporters. Inositol is readily abundant in the bloodstream of mammalian hosts, providing a source from which many pathogens could potentially import inositol. However, despite this abundance of inositol in the host, some pathogens such as the bacterium and the protist parasite must be able to make inositol in order to cause disease () or even grow (). Other pathogens such as the fungus are equally adept at causing disease by importing inositol or by making it . The role of inositol acquisition in the biology and pathogenesis of the parasite and the fungus are being explored as well. The specific strategies used by these pathogens to acquire inositol while in the host are discussed in relation to each pathogen's unique metabolic requirements.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.025718-0
2009-05-01
2020-08-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/5/1386.html?itemId=/content/journal/micro/10.1099/mic.0.025718-0&mimeType=html&fmt=ahah

References

  1. Alderwick L. J., Birch H. L., Mishra A. K., Eggeling L., Besra G. S.. 2007; Structure, function and biosynthesis of the Mycobacterium tuberculosis cell wall: arabinogalactan and lipoarabinomannan assembly with a view to discovering new drug targets. Biochem Soc Trans35:1325–1328
    [Google Scholar]
  2. Bar-Peled M., Griffith C. L., Ory J. J., Doering T. L.. 2004; Biosynthesis of UDP-GlcA, a key metabolite for capsular polysaccharide synthesis in the pathogenic fungus Cryptococcus neoformans . Biochem J381:131–136
    [Google Scholar]
  3. Berman T., Magasanik B.. 1966; The pathway of myo -inositol degradation in Aerobacter aerogenes . Dehydrogenation and dehydration. J Biol Chem241:800–806
    [Google Scholar]
  4. Bhatt A., Green R., Coles R., Condon M., Connell N. D.. 1998; A mutant of Mycobacterium smegmatis defective in dipeptide transport. J Bacteriol180:6773–6775
    [Google Scholar]
  5. Braun B. R., van Het Hoog M., d'Enfert C., Martchenko M., Dungan J., Kuo A., Inglis D. O., Uhl M. A., Hogues H.. other authors 2005; A human-curated annotation of the Candida albicans genome. PLoS Genet1:36–57
    [Google Scholar]
  6. Briken V., Porcelli S. A., Besra G. S., Kremer L.. 2004; Mycobacterial lipoarabinomannan and related lipoglycans: from biogenesis to modulation of the immune response. Mol Microbiol53:391–403
    [Google Scholar]
  7. Burg M. B.. 1997; Renal osmoregulatory transport of compatible organic osmolytes. Curr Opin Nephrol Hypertens6:430–433
    [Google Scholar]
  8. Calderone R. A.. 2002; Candida and Candidiasis Washington, DC: American Society for Microbiology;
  9. Care R. S., Trevethick J., Binley K. M., Sudbery P. E.. 1999; The MET3 promoter: a new tool for Candida albicans molecular genetics. Mol Microbiol34:792–798
    [Google Scholar]
  10. Casadevall A., Perfect J. R.. 1998; Cryptococcus neoformans Washington, DC: American Society for Microbiology;
  11. Chen M., Hancock L. C., Lopes J. M.. 2007; Transcriptional regulation of yeast phospholipid biosynthetic genes. Biochim Biophys Acta1771:310–321
    [Google Scholar]
  12. Chen Y. L., Kauffman S., Reynolds T. B.. 2008; Candida albicans uses multiple mechanisms to acquire the essential metabolite inositol during infection. Infect Immun76:2793–2801
    [Google Scholar]
  13. Coady M. J., Wallendorff B., Gagnon D. G., Lapointe J. Y.. 2002; Identification of a novel Na+/ myo -inositol cotransporter. J Biol Chem277:35219–35224
    [Google Scholar]
  14. Dickson R. C., Lester R. L.. 1999; Yeast sphingolipids. Biochim Biophys Acta1426:347–357
    [Google Scholar]
  15. Doering T. L., Schekman R.. 1996; GPI anchor attachment is required for Gas1p transport from the endoplasmic reticulum in COP II vesicles. EMBO J15:182–191
    [Google Scholar]
  16. Donahue T. F., Henry S. A.. 1981; myo -Inositol-1-phosphate synthase. Characteristics of the enzyme and identification of its structural gene in yeast. J Biol Chem256:7077–7085
    [Google Scholar]
  17. Drew M. E., Langford C. K., Klamo E. M., Russell D. G., Kavanaugh M. P., Landfear S. M.. 1995; Functional expression of a myo -inositol/H+ symporter from Leishmania donovani . Mol Cell Biol15:5508–5515
    [Google Scholar]
  18. Einicker-Lamas M., Almeida A. C., Todorov A. G., de Castro S. L., Caruso-Neves C., Oliveira M. M.. 2000; Characterization of the myo -inositol transport system in Trypanosoma cruzi . Eur J Biochem267:2533–2537
    [Google Scholar]
  19. Einicker-Lamas M., Nascimento M. T., Masuda C. A., Oliveira M. M., Caruso-Neves C.. 2007; Trypanosoma cruzi epimastigotes: regulation of myo -inositol transport by effectors of protein kinases A and C. Exp Parasitol117:171–177
    [Google Scholar]
  20. Eisenman H. C., Mues M., Weber S. E., Frases S., Chaskes S., Gerfen G., Casadevall A.. 2007; Cryptococcus neoformans laccase catalyses melanin synthesis from both d- and l-DOPA. Microbiology153:3954–3962
    [Google Scholar]
  21. Ferguson M. A., Brimacombe J. S., Cottaz S., Field R. A., Güther L. S., Homans S. W., McConville M. J., Mehlert A., Milne K. G.. other authors 1994; Glycosyl-phosphatidylinositol molecules of the parasite and the host. Parasitology108:SupplS45–S54
    [Google Scholar]
  22. Fisher S. K., Novak J. E., Agranoff B. W.. 2002; Inositol and higher inositol phosphates in neural tissues: homeostasis, metabolism and functional significance. J Neurochem82:736–754
    [Google Scholar]
  23. Fry J., Wood M., Poole P. S.. 2001; Investigation of myo -inositol catabolism in Rhizobium leguminosarum bv. viciae and its effect on nodulation competitiveness. Mol Plant Microbe Interact14:1016–1025
    [Google Scholar]
  24. Galbraith M. P., Feng S. F., Borneman J., Triplett E. W., de Bruijn F. J., Rossbach S.. 1998; A functional myo -inositol catabolism pathway is essential for rhizopine utilization by Sinorhizobium meliloti . Microbiology144:2915–2924
    [Google Scholar]
  25. Graves J. A., Henry S. A.. 2000; Regulation of the yeast INO1 gene. The products of the INO2 , INO4 and OPI1 regulatory genes are not required for repression in response to inositol. Genetics154:1485–1495
    [Google Scholar]
  26. Greenberg M. L., Lopes J. M.. 1996; Genetic regulation of phospholipid biosynthesis in Saccharomyces cerevisiae . Microbiol Rev60:1–20
    [Google Scholar]
  27. Griffith C. L., Klutts J. S., Zhang L., Levery S. B., Doering T. L.. 2004; UDP-glucose dehydrogenase plays multiple roles in the biology of the pathogenic fungus Cryptococcus neoformans . J Biol Chem279:51669–51676
    [Google Scholar]
  28. Hager K., Hazama A., Kwon H. M., Loo D. D., Handler J. S., Wright E. M.. 1995; Kinetics and specificity of the renal Na+/ myo -inositol cotransporter expressed in Xenopus oocytes. J Membr Biol143:103–113
    [Google Scholar]
  29. Haites R. E., Morita Y. S., McConville M. J., Billman-Jacobe H.. 2005; Function of phosphatidylinositol in mycobacteria. J Biol Chem280:10981–10987
    [Google Scholar]
  30. Hankes L. V., Politzer W. M., Touster O., Anderson L.. 1969; myo -Inositol catabolism in human pentosurics: the predominant role of the glucuronate-xylulose-pentose phosphate pathway. Ann N Y Acad Sci165:564–576
    [Google Scholar]
  31. Healy M. E., Dillavou C. L., Taylor G. E.. 1977; Diagnostic medium containing inositol, urea, and caffeic acid for selective growth of Cryptococcus neoformans . J Clin Microbiol6:387–391
    [Google Scholar]
  32. Heitman J., Filler S. G., Edwards J. E. Jr, Mitchell A. P.. 2006; Molecular Principles of Fungal Pathogenesis Washington, DC: American Society for Microbiology;
  33. Heyken W. T., Wagner C., Wittmann J., Albrecht A., Schuller H. J.. 2003; Negative regulation of phospholipid biosynthesis in Saccharomyces cerevisiae by a Candida albicans orthologue of OPI1 . Yeast20:1177–1188
    [Google Scholar]
  34. Hoppen J., Dietz M., Warsow G., Rohde R., Schuller H. J.. 2007; Ribosomal protein genes in the yeast Candida albicans may be activated by a heterodimeric transcription factor related to Ino2 and Ino4 from S. cerevisiae . Mol Genet Genomics278:317–330
    [Google Scholar]
  35. Idnurm A., Bahn Y. S., Nielsen K., Lin X., Fraser J. A., Heitman J.. 2005; Deciphering the model pathogenic fungus Cryptococcus neoformans . Nat Rev Microbiol3:753–764
    [Google Scholar]
  36. Ilg T.. 2002; Generation of myo -inositol-auxotrophic Leishmania mexicana mutants by targeted replacement of the myo -inositol-1-phosphate synthase gene. Mol Biochem Parasitol120:151–156
    [Google Scholar]
  37. Isaacks R. E., Bender A. S., Kim C. Y., Norenberg M. D.. 1997; Effect of osmolality and myo -inositol deprivation on the transport properties of myo -inositol in primary astrocyte cultures. Neurochem Res22:1461–1469
    [Google Scholar]
  38. James B. W., Williams A., Marsh P. D.. 2000; The physiology and pathogenicity of Mycobacterium tuberculosis grown under controlled conditions in a defined medium. J Appl Microbiol88:669–677
    [Google Scholar]
  39. Jin J. H., Seyfang A.. 2003; High-affinity myo -inositol transport in Candida albicans : substrate specificity and pharmacology. Microbiology149:3371–3381
    [Google Scholar]
  40. Kanter U., Becker M., Friauf E., Tenhaken R.. 2003; Purification, characterization and functional cloning of inositol oxygenase from Cryptococcus . Yeast20:1317–1329
    [Google Scholar]
  41. Kouzuma T., Takahashi M., Endoh T., Kaneko R., Ura N., Shimamoto K., Watanabe N.. 2001; An enzymatic cycling method for the measurement of myo -inositol in biological samples. Clin Chim Acta312:143–151
    [Google Scholar]
  42. Krings E., Krumbach K., Bathe B., Kelle R., Wendisch V. F., Sahm H., Eggeling L.. 2006; Characterization of myo -inositol utilization by Corynebacterium glutamicum : the stimulon, identification of transporters, and influence on l-lysine formation. J Bacteriol188:8054–8061
    [Google Scholar]
  43. Kwon H. M., Yamauchi A., Uchida S., Preston A. S., Garcia-Perez A., Burg M. B., Handler J. S.. 1992; Cloning of the cDNa for a Na+/ myo -inositol cotransporter, a hypertonicity stress protein. J Biol Chem267:6297–6301
    [Google Scholar]
  44. Loewus F. A., Kelly S., Neufeld E. F.. 1962; Metabolism of myo -inositol in plants: conversion to pectin, hemicellulose, d-xylose, and sugar acids. Proc Natl Acad Sci U S A48:421–425
    [Google Scholar]
  45. Lopez F., Leube M., Gil-Mascarell R., Navarro-Avino J. P., Serrano R.. 1999; The yeast inositol monophosphatase is a lithium- and sodium-sensitive enzyme encoded by a non-essential gene pair. Mol Microbiol31:1255–1264
    [Google Scholar]
  46. Majumder A. L., Johnson M. D., Henry S. A.. 1997; 1l- myo -inositol-1-phosphate synthase. Biochim Biophys Acta 1348;245–256
    [Google Scholar]
  47. Martin K. L., Smith T. K.. 2005; The myo -inositol-1-phosphate synthase gene is essential in Trypanosoma brucei . Biochem Soc Trans33:983–985
    [Google Scholar]
  48. Martin K. L., Smith T. K.. 2006a; The glycosylphosphatidylinositol (GPI) biosynthetic pathway of bloodstream-form Trypanosoma brucei is dependent on the de novo synthesis of inositol. Mol Microbiol61:89–105
    [Google Scholar]
  49. Martin K. L., Smith T. K.. 2006b; Phosphatidylinositol synthesis is essential in bloodstream form Trypanosoma brucei . Biochem J396:287–295
    [Google Scholar]
  50. Michell R. H.. 2008; Inositol derivatives: evolution and functions. Nat Rev Mol Cell Biol9:151–161
    [Google Scholar]
  51. Molina Y., Ramos S. E., Douglass T., Klig L. S.. 1999; Inositol synthesis and catabolism in Cryptococcus neoformans . Yeast15:1657–1667
    [Google Scholar]
  52. Mongan T. P., Ganapasam S., Hobbs S. B., Seyfang A.. 2004; Substrate specificity of the Leishmania donovani myo -inositol transporter: critical role of inositol C-2, C-3 and C-5 hydroxyl groups. Mol Biochem Parasitol135:133–141
    [Google Scholar]
  53. Movahedzadeh F., Smith D. A., Norman R. A., Dinadayala P., Murray-Rust J., Russell D. G., Kendall S. L., Rison S. C., McAlister M. S.. other authors 2004; The Mycobacterium tuberculosis ino1 gene is essential for growth and virulence. Mol Microbiol51:1003–1014
    [Google Scholar]
  54. Moyrand F., Janbon G.. 2004; UGD1 , encoding the Cryptococcus neoformans UDP-glucose dehydrogenase, is essential for growth at 37 °C and for capsule biosynthesis. Eukaryot Cell3:1601–1608
    [Google Scholar]
  55. Nagamune K., Nozaki T., Maeda Y., Ohishi K., Fukuma T., Hara T., Schwarz R. T., Sutterlin C., Brun R.. other authors 2000; Critical roles of glycosylphosphatidylinositol for Trypanosoma brucei . Proc Natl Acad Sci U S A97:10336–10341
    [Google Scholar]
  56. Newton G. L., Fahey R. C.. 2002; Mycothiol biochemistry. Arch Microbiol178:388–394
    [Google Scholar]
  57. Newton G. L., Ta P., Bzymek K. P., Fahey R. C.. 2006; Biochemistry of the initial steps of mycothiol biosynthesis. J Biol Chem281:33910–33920
    [Google Scholar]
  58. Newton G. L., Buchmeier N., Fahey R. C.. 2008; Biosynthesis and functions of mycothiol, the unique protective thiol of Actinobacteria. Microbiol Mol Biol Rev72:471–494
    [Google Scholar]
  59. Nigou J., Gilleron M., Puzo G.. 2003; Lipoarabinomannans: from structure to biosynthesis. Biochimie85:153–166
    [Google Scholar]
  60. Nikawa J., Tsukagoshi Y., Yamashita S.. 1991; Isolation and characterization of two distinct myo -inositol transporter genes of Saccharomyces cerevisiae . J Biol Chem266:11184–11191
    [Google Scholar]
  61. Orlean P., Menon A. K.. 2007; Thematic review series: lipid posttranslational modifications. GPI anchoring of protein in yeast and mammalian cells, or: how we learned to stop worrying and love glycophospholipids. J Lipid Res48:993–1011
    [Google Scholar]
  62. Palmano K. P., Whiting P. H., Hawthorne J. N.. 1977; Free and lipid myo -inositol in tissues from rats with acute and less severe streptozotocin-induced diabetes. Biochem J167:229–235
    [Google Scholar]
  63. Polacheck I., Platt Y., Aronovitch J.. 1990; Catecholamines and virulence of Cryptococcus neoformans . Infect Immun58:2919–2922
    [Google Scholar]
  64. Prabhu K. S., Arner R. J., Vunta H., Reddy C. C.. 2005; Up-regulation of human myo -inositol oxygenase by hyperosmotic stress in renal proximal tubular epithelial cells. J Biol Chem280:19895–19901
    [Google Scholar]
  65. Rawat M., Av-Gay Y.. 2007; Mycothiol-dependent proteins in actinomycetes. FEMS Microbiol Rev31:278–292
    [Google Scholar]
  66. Rengarajan J., Bloom B. R., Rubin E. J.. 2005; Genome-wide requirements for Mycobacterium tuberculosis adaptation and survival in macrophages. Proc Natl Acad Sci U S A102:8327–8332
    [Google Scholar]
  67. Rodaki A., Young T., Brown A. J.. 2006; Effects of depleting the essential central metabolic enzyme fructose-1,6-bisphosphate aldolase on the growth and viability of Candida albicans : implications for antifungal drug target discovery. Eukaryot Cell5:1371–1377
    [Google Scholar]
  68. Seitz B., Klos C., Wurm M., Tenhaken R.. 2000; Matrix polysaccharide precursors in Arabidopsis cell walls are synthesized by alternate pathways with organ-specific expression patterns. Plant J21:537–546
    [Google Scholar]
  69. Seyfang A., Landfear S. M.. 2000; Four conserved cytoplasmic sequence motifs are important for transport function of the Leishmania inositol/H+ symporter. J Biol Chem275:5687–5693
    [Google Scholar]
  70. Sheader K., Vaughan S., Minchin J., Hughes K., Gull K., Rudenko G.. 2005; Variant surface glycoprotein RNA interference triggers a precytokinesis cell cycle arrest in African trypanosomes. Proc Natl Acad Sci U S A102:8716–8721
    [Google Scholar]
  71. Strahl T., Thorner J.. 2007; Synthesis and function of membrane phosphoinositides in budding yeast, Saccharomyces cerevisiae . Biochim Biophys Acta1771:353–404
    [Google Scholar]
  72. Sundstrom P.. 2002; Adhesion in Candida spp. Cell Microbiol4:461–469
    [Google Scholar]
  73. Tenhaken R., Thulke O.. 1996; Cloning of an enzyme that synthesizes a key nucleotide-sugar precursor of hemicellulose biosynthesis from soybean: UDP-glucose dehydrogenase. Plant Physiol112:1127–1134
    [Google Scholar]
  74. Uldry M., Ibberson M., Horisberger J. D., Chatton J. Y., Riederer B. M., Thorens B.. 2001; Identification of a mammalian H+- myo -inositol symporter expressed predominantly in the brain. EMBO J20:4467–4477
    [Google Scholar]
  75. Vance J. E.. 2003; Molecular and cell biology of phosphatidylserine and phosphatidylethanolamine metabolism. Prog Nucleic Acid Res Mol Biol75:69–111
    [Google Scholar]
  76. van Meer G., Voelker D. R., Feigenson G. W.. 2008; Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol9:112–124
    [Google Scholar]
  77. Vial H. J., Eldin P., Tielens A. G., van Hellemond J. J.. 2003; Phospholipids in parasitic protozoa. Mol Biochem Parasitol126:143–154
    [Google Scholar]
  78. Vilchèze C., Av-Gay Y., Attarian R., Liu Z., Hazbón M. H., Colangeli R., Chen B., Liu W., Alland D.. other authors 2008; Mycothiol biosynthesis is essential for ethionamide susceptibility in Mycobacterium tuberculosis . Mol Microbiol69:1316–1329
    [Google Scholar]
  79. Witola W. H., El Bissati K., Pessi G., Xie C., Roepe P. D., Ben Mamoun C.. 2008; Disruption of the Plasmodium falciparum PfPMT gene results in a complete loss of phosphatidylcholine biosynthesis via the serine-decarboxylase-phosphoethanolamine-methyltransferase pathway and severe growth and survival defects. J Biol Chem283:27636–27643
    [Google Scholar]
  80. Xue C., Tada Y., Dong X., Heitman J.. 2007; The human fungal pathogen Cryptococcus can complete its sexual cycle during a pathogenic association with plants. Cell Host Microbe1:263–273
    [Google Scholar]
  81. Yebra M. J., Zuniga M., Beaufils S., Perez-Martinez G., Deutscher J., Monedero V.. 2007; Identification of a gene cluster enabling Lactobacillus casei BL23 to utilize myo -inositol. Appl Environ Microbiol73:3850–3858
    [Google Scholar]
  82. Yoshida K. I., Aoyama D., Ishio I., Shibayama T., Fujita Y.. 1997; Organization and transcription of the myo -inositol operon, iol , of Bacillus subtilis . J Bacteriol179:4591–4598
    [Google Scholar]
  83. Yoshida K., Yamaguchi M., Morinaga T., Kinehara M., Ikeuchi M., Ashida H., Fujita Y.. 2008; myo -Inositol catabolism in Bacillus subtilis . J Biol Chem283:10415–10424
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.025718-0
Loading
/content/journal/micro/10.1099/mic.0.025718-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error