Subinhibitory concentrations of the cationic antimicrobial peptide colistin induce the pseudomonas quinolone signal in Free

Abstract

Colistin is an important cationic antimicrobial peptide (CAMP) in the fight against infection in cystic fibrosis (CF) lungs. The effects of subinhibitory concentrations of colistin on gene expression in were investigated by transcriptome and functional genomic approaches. Analysis revealed altered expression of 30 genes representing a variety of pathways associated with virulence and bacterial colonization in chronic infection. These included response to osmotic stress, motility, and biofilm formation, as well as genes associated with LPS modification and quorum sensing (QS). Most striking was the upregulation of Pseudomonas quinolone signal (PQS) biosynthesis genes, including , and , and the phenazine biosynthesis operon. Induction of this central component of the QS network following exposure to subinhibitory concentrations of colistin may represent a switch to a more robust population, with increased fitness in the competitive environment of the CF lung.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.025643-0
2009-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/9/2826.html?itemId=/content/journal/micro/10.1099/mic.0.025643-0&mimeType=html&fmt=ahah

References

  1. Ainsworth G. C., Brown A. M., Brownlee G. 1947; Aerosporin. An antibiotic produced by Bacillus aerosporus . Nature 160:263
    [Google Scholar]
  2. Beringer P. 2001; The clinical use of colistin in patients with cystic fibrosis. Curr Opin Pulm Med 7:434–440
    [Google Scholar]
  3. Bodey G. P., Bolivar R., Fainstein V., Jadeja L. 1983; Infections caused by Pseudomonas aeruginosa . Rev Infect Dis 5:279–313
    [Google Scholar]
  4. Bonomo R. A., Szabo D. 2006; Mechanisms of multidrug resistance in Acinetobacter species and Pseudomonas aeruginosa . Clin Infect Dis 43:suppl 2S49–S56
    [Google Scholar]
  5. Brazas M. D., Hancock R. E. 2005; Ciprofloxacin induction of a susceptibility determinant in Pseudomonas aeruginosa . Antimicrob Agents Chemother 49:3222–3227
    [Google Scholar]
  6. Bredenbruch F., Geffers R., Nimtz M., Buer J., Häussler S. 2006; The Pseudomonas aeruginosa quinolone signal (PQS) has an iron-chelating activity. Environ Microbiol 8:1318–1329
    [Google Scholar]
  7. Brown J. M., Dorman D. C., Roy L. P. 1970; Acute renal failure due to overdosage of colistin. Med J Aust 2:923–924
    [Google Scholar]
  8. Cao H., Krishnan G., Goumnerov B., Tsongalis J., Tompkins R., Rahme L. G. 2001; A quorum sensing-associated virulence gene of Pseudomonas aeruginosa encodes a LysR-like transcription regulator with a unique self-regulatory mechanism. Proc Natl Acad Sci U S A 98:14613–14618
    [Google Scholar]
  9. Davies J., Spiegelman G. B., Yim G. 2006; The world of subinhibitory antibiotic concentrations. Curr Opin Microbiol 9:445–453
    [Google Scholar]
  10. Denton M., Kerr K., Mooney L., Keer V., Rajgopal A., Brownlee K., Arundel P., Conway S. 2002; Transmission of colistin-resistant Pseudomonas aeruginosa between patients attending a pediatric cystic fibrosis center. Pediatr Pulmonol 34:257–261
    [Google Scholar]
  11. Déziel E., Lépine F., Milot S., He J., Mindrinos M. N., Tompkins R. G., Rahme L. G. 2004; Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proc Natl Acad Sci U S A 101:1339–1344
    [Google Scholar]
  12. Diggle S. P., Winzer K., Chhabra S. R., Worrall K. E., Camara M., Williams P. 2003; The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates rhl-dependent genes at the onset of stationary phase and can be produced in the absence of LasR. Mol Microbiol 50:29–43
    [Google Scholar]
  13. Diggle S. P., Matthijs S., Wright V. J., Fletcher M. P., Chhabra S. R., Lamont I. L., Kong X., Hider R. C., Cornelis P. other authors 2007; The Pseudomonas aeruginosa 4-quinolone signal molecules HHQ and PQS play multifunctional roles in quorum sensing and iron entrapment. Chem Biol 14:87–96
    [Google Scholar]
  14. Dubern J. F., Diggle S. P. 2008; Quorum sensing by 2-alkyl-4-quinolones in Pseudomonas aeruginosa and other bacterial species. Mol Biosyst 4:882–888
    [Google Scholar]
  15. Evans M. E., Feola D. J., Rapp R. P. 1999; Polymyxin B sulfate and colistin: old antibiotics for emerging multiresistant Gram-negative bacteria. Ann Pharmacother 33:960–967
    [Google Scholar]
  16. Fletcher M. P., Diggle S. P., Camara M., Williams P. 2007; Biosensor-based assays for PQS, HHQ and related 2-alkyl-4-quinolone quorum sensing signal molecules. Nat Protoc 2:1254–1262
    [Google Scholar]
  17. Frederiksen B., Koch C., Høiby N. 1999; Changing epidemiology of Pseudomonas aeruginosa infection in Danish cystic fibrosis patients (1974–1995. Pediatr Pulmonol 28:159–166
    [Google Scholar]
  18. Gallagher L. A., Manoil C. 2001; Pseudomonas aeruginosa PAO1 kills Caenorhabditis elegans by cyanide poisoning. J Bacteriol 183:6207–6214
    [Google Scholar]
  19. Garnacho-Montero J., Ortiz-Leyba C., Jiménez-Jiménez F. J., Barrero-Almodóvar A. E., García-Garmendia J. L., Bernabeu-Wittel I. M., Gallego-Lara S. L., Madrazo-Osuna J. 2003; Treatment of multidrug-resistant Acinetobacter baumannii ventilator-associated pneumonia (VAP) with intravenous colistin: a comparison with imipenem-susceptible VAP. Clin Infect Dis 36:1111–1118
    [Google Scholar]
  20. Gerber M., Walch C., Löffler B., Tischendorf K., Reischl U., Ackermann G. 2008; Effect of sub-MIC concentrations of metronidazole, vancomycin, clindamycin and linezolid on toxin gene transcription and production in Clostridium difficile . J Med Microbiol 57:776–783
    [Google Scholar]
  21. Goh E. B., Yim G., Tsui W., McClure J., Surette M. G., Davies J. 2002; Transcriptional modulation of bacterial gene expression by subinhibitory concentrations of antibiotics. Proc Natl Acad Sci U S A 99:17025–17030
    [Google Scholar]
  22. Govan J. R., Deretic V. 1996; Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia . Microbiol Rev 60:539–574
    [Google Scholar]
  23. Guina T., Purvine S. O., Yi E. C., Eng J., Goodlett D. R., Aebersold R., Miller S. I. 2003; Quantitative proteomic analysis indicates increased synthesis of a quinolone by Pseudomonas aeruginosa isolates from cystic fibrosis airways. Proc Natl Acad Sci U S A 100:2771–2776
    [Google Scholar]
  24. Hanberger H., Diekema D., Fluit A., Jones R., Struelens M., Spencer R., Wolff M. 2001; Surveillance of antibiotic resistance in European ICUs. J Hosp Infect 48:161–176
    [Google Scholar]
  25. Hancock R. E. 1997a; The bacterial outer membrane as a drug barrier. Trends Microbiol 5:37–42
    [Google Scholar]
  26. Hancock R. E. 1997b; Peptide antibiotics. Lancet 349:418–422
    [Google Scholar]
  27. Häussler S., Becker T. 2008; The pseudomonas quinolone signal (PQS) balances life and death in Pseudomonas aeruginosa populations. PLoS Pathog 4:e1000166
    [Google Scholar]
  28. Hawley J. S., Murray C. K., Jorgensen J. H. 2008; Colistin heteroresistance in Acinetobacter and its association with previous colistin therapy. Antimicrob Agents Chemother 52:351–352
    [Google Scholar]
  29. Hays E. E., Wells I. C., Katzman P. A., Cain C. K., Jacobs F. A., Thayer S. A., Doisy E. A., Gaby W. L., Roberts E. C. & other authors; 1945; Antibiotic substances produced by Pseudomonas aeruginosa . J Biol Chem 159:725–750
    [Google Scholar]
  30. Hermsen E. D., Sullivan C. J., Rotschafer J. C. 2003; Polymyxins: pharmacology, pharmacokinetics, pharmacodynamics, and clinical applications. Infect Dis Clin North Am 17:545–562
    [Google Scholar]
  31. Hoffman L. R., D'Argenio D. A., MacCoss M. J., Zhang Z., Jones R. A., Miller S. I. 2005; Aminoglycoside antibiotics induce bacterial biofilm formation. Nature 436:1171–1175
    [Google Scholar]
  32. Hostacka A., Ciznar I. 2008; Aminoglycosides and colistin inhibit biofilm formation in Klebsiella pneumoniae . Epidemiol Mikrobiol Imunol 57:101–105
    [Google Scholar]
  33. Labro M. T., el Benna J., Jemni A. 1992; Alteration of bacteria induced by subinhibitory concentrations of cefixime: consequences on bactericidal activity of human polynuclear neutrophils. Pathol Biol (Paris ) 40:427–432
    [Google Scholar]
  34. Lépine F., Déziel E., Milot S., Rahme L. G. 2003; A stable isotope dilution assay for the quantification of the Pseudomonas quinolone signal in Pseudomonas aeruginosa cultures. Biochim Biophys Acta 1622:36–41
    [Google Scholar]
  35. Li J., Rayner C. R., Nation R. L., Owen R. J., Spelman D., Tan K. E., Liolios L. 2006; Heteroresistance to colistin in multidrug-resistant Acinetobacter baumannii . Antimicrob Agents Chemother 50:2946–2950
    [Google Scholar]
  36. Liang H., Li L., Dong Z., Surette M. G., Duan K. 2008; The YebC family protein PA0964 negatively regulates the Pseudomonas aeruginosa quinolone signal system and pyocyanin production. J Bacteriol 190:6217–6227
    [Google Scholar]
  37. Linares J. F., Gustafsson I., Baquero F., Martinez J. L. 2006; Antibiotics as intermicrobial signaling agents instead of weapons. Proc Natl Acad Sci U S A 103:19484–19489
    [Google Scholar]
  38. Mahajan-Miklos S., Tan M. W., Rahme L. G., Ausubel F. M. 1999; Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosaCaenorhabditis elegans pathogenesis model. Cell 96:47–56
    [Google Scholar]
  39. Markou N., Apostolakos H., Koumoudiou C., Athanasiou M., Koutsoukou A., Alamanos I., Gregorakos L. 2003; Intravenous colistin in the treatment of sepsis from multi-resistant Gram-negative bacilli in critically ill patients. Crit Care 7:R78–R83
    [Google Scholar]
  40. Mashburn-Warren L., Howe J., Garidel P., Richter W., Steiniger F., Roessle M., Brandenburg K., Whiteley M. 2008; Interaction of quorum signals with outer membrane lipids: insights into prokaryotic membrane vesicle formation. Mol Microbiol 69:491–502
    [Google Scholar]
  41. Mavrodi D. V., Bonsall R. F., Delaney S. M., Soule M. J., Phillips G., Thomashow L. S. 2001; Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1. J Bacteriol 183:6454–6465
    [Google Scholar]
  42. McGrath S., Wade D. S., Pesci E. C. 2004; Dueling quorum sensing systems in Pseudomonas aeruginosa control the production of the Pseudomonas quinolone signal (PQS. FEMS Microbiol Lett 230:27–34
    [Google Scholar]
  43. McPhee J. B., Lewenza S., Hancock R. E. 2003; Cationic antimicrobial peptides activate a two-component regulatory system, PmrA–PmrB, that regulates resistance to polymyxin B and cationic antimicrobial peptides in Pseudomonas aeruginosa . Mol Microbiol 50:205–217
    [Google Scholar]
  44. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  45. Mitova M. I., Lang G., Wiese J., Imhoff J. F. 2008; Subinhibitory concentrations of antibiotics induce phenazine production in a marine Streptomyces sp. J Nat Prod 71:824–827
    [Google Scholar]
  46. Nalca Y., Jänsch L., Bredenbruch F., Geffers R., Buer J., Häussler S. 2006; Quorum-sensing antagonistic activities of azithromycin in Pseudomonas aeruginosa PAO1: a global approach. Antimicrob Agents Chemother 50:1680–1688
    [Google Scholar]
  47. Nikaido H. 1989; Outer membrane barrier as a mechanism of antimicrobial resistance. Antimicrob Agents Chemother 33:1831–1836
    [Google Scholar]
  48. Oh J. T., Cajal Y., Skowronska E. M., Belkin S., Chen J., Van Dyk T. K., Sasser M., Jain M. K. 2000; Cationic peptide antimicrobials induce selective transcription of micF and osmY in Escherichia coli . Biochim Biophys Acta 146343–54
    [Google Scholar]
  49. Overhage J., Campisano A., Bains M., Torfs E. C., Rehm B. H., Hancock R. E. 2008; The human host defence peptide LL-37 prevents bacterial biofilm formation. Infect Immun 76:4176–4182
    [Google Scholar]
  50. Peschel A. 2002; How do bacteria resist human antimicrobial peptides?. Trends Microbiol 10:179–186
    [Google Scholar]
  51. Pesci E. C., Milbank J. B., Pearson J. P., McKnight S., Kende A. S., Greenberg E. P., Iglewski B. H. 1999; Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa . Proc Natl Acad Sci U S A 96:11229–11234
    [Google Scholar]
  52. Rahal J. J. 2006; Novel antibiotic combinations against infections with almost completely resistant Pseudomonas aeruginosa and Acinetobacter species. Clin Infect Dis 43 :suppl. 2S95–S99
    [Google Scholar]
  53. Rahme L. G., Ausubel F. M., Cao H., Drenkard E., Goumnerov B. C., Lau G. W., Mahajan-Miklos S., Plotnikova J., Tan M. W. other authors 2000; Plants and animals share functionally common bacterial virulence factors. Proc Natl Acad Sci U S A 97:8815–8821
    [Google Scholar]
  54. Ryan R. P., Fouhy Y., Garcia B. F., Watt S. A., Niehaus K., Yang L., Tolker-Nielsen T., Dow J. M. 2008; Interspecies signalling via the Stenotrophomonas maltophilia diffusible signal factor influences biofilm formation and polymyxin tolerance in Pseudomonas aeruginosa . Mol Microbiol 68:75–86
    [Google Scholar]
  55. Savli H., Karadenizli A., Kolayli F., Gundes S., Ozbek U., Vahaboglu H. 2003; Expression stability of six housekeeping genes: a proposal for resistance gene quantification studies of Pseudomonas aeruginosa by real-time quantitative RT-PCR. J Med Microbiol 52:403–408
    [Google Scholar]
  56. Shen L., Shi Y., Zhang D., Wei J., Surette M. G., Duan K. 2008; Modulation of secreted virulence factor genes by subinhibitory concentrations of antibiotics in Pseudomonas aeruginosa . J Microbiol 46:441–447
    [Google Scholar]
  57. Skindersoe M. E., Alhede M., Phipps R., Yang L., Jensen P. O., Rasmussen T. B., Bjarnsholt T., Tolker-Nielsen T., Høiby N., Givskov M. 2008; Effects of antibiotics on quorum sensing in Pseudomonas aeruginosa . Antimicrob Agents Chemother 52:3648–3663
    [Google Scholar]
  58. Spaink H. P., Okker R. J. H., Wijffelman C. A., Pees E., Lugtenberg B. J. J. 1987; Promoters of nodulation region of the Rhizobium leguminosarum Sym plasmid pRL1J1. Plant Mol Biol 9:27–39
    [Google Scholar]
  59. Tam V. H., Schilling A. N., Vo G., Kabbara S., Kwa A. L., Wiederhold N. P., Lewis R. E. 2005; Pharmacodynamics of polymyxin B against Pseudomonas aeruginosa . Antimicrob Agents Chemother 49:3624–3630
    [Google Scholar]
  60. Tomasinsig L., Scocchi M., Mettulio R., Zanetti M. 2004; Genome-wide transcriptional profiling of the Escherichia coli response to a proline-rich antimicrobial peptide. Antimicrob Agents Chemother 48:3260–3267
    [Google Scholar]
  61. Wade D. S., Calfee M. W., Rocha E. R., Ling E. A., Engstrom E., Coleman J. P., Pesci E. C. 2005; Regulation of Pseudomonas quinolone signal synthesis in Pseudomonas aeruginosa . J Bacteriol 187:4372–4380
    [Google Scholar]
  62. Waite R. D., Papakonstantinopoulou A., Littler E., Curtis M. A. 2005; Transcriptome analysis of Pseudomonas aeruginosa growth: comparison of gene expression in planktonic cultures and developing and mature biofilms. J Bacteriol 187:6571–6576
    [Google Scholar]
  63. Waite R. D., Paccanaro A., Papakonstantinopoulou A., Hurst J. M., Saqi M., Littler E., Curtis M. A. 2006; Clustering of Pseudomonas aeruginosa transcriptomes from planktonic cultures, developing and mature biofilms reveals distinct expression profiles. BMC Genomics 7:162
    [Google Scholar]
  64. Wells I. C., Elliott W. H., Thayer S. A., Doisy E. A. 1952; Ozonization of some antibiotic substances produced by Pseudomonas aeruginosa . J Biol Chem 196:321–330
    [Google Scholar]
  65. Whiteley M., Bangera M. G., Bumgarner R. E., Parsek M. R., Teitzel G. M., Lory S., Greenberg E. P. 2001; Gene expression in Pseudomonas aeruginosa biofilms. Nature 413:860–864
    [Google Scholar]
  66. Xiao G., He J., Rahme L. G. 2006; Mutation analysis of the Pseudomonas aeruginosa mvfR and pqsABCDE gene promoters demonstrates complex quorum-sensing circuitry. Microbiology 152:1679–1686
    [Google Scholar]
  67. Yang L., Barken K. B., Skindersoe M. E., Christensen A. B., Givskov M., Tolker-Nielsen T. 2007; Effects of iron on DNA release and biofilm development by Pseudomonas aeruginosa . Microbiology 153:1318–1328
    [Google Scholar]
  68. Zaborina O., Lépine F., Xiao G., Valuckaite V., Chen Y., Li T., Ciancio M., Zaborin A., Petrof E. O. other authors 2007; Dynorphin activates quorum sensing quinolone signaling in Pseudomonas aeruginosa . PLoS Pathog 3:e35
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.025643-0
Loading
/content/journal/micro/10.1099/mic.0.025643-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF

Most cited Most Cited RSS feed