1887

Abstract

is a Gram-negative opportunistic pathogen that causes acute and chronic infections in immunocompromised individuals. It is also a model organism for bacterial biofilm formation. Acute infections are often associated with planktonic or free-floating cells, high virulence and fast growth. Conversely, chronic infections are often associated with the biofilm mode of growth, low virulence and slow growth that resembles that of planktonic cells in stationary phase. Biofilm formation and type III secretion have been shown to be reciprocally regulated, and it has been suggested that factors related to acute infection may be incompatible with biofilm formation. In a previous proteomic study of the interrelationships between planktonic cells, colonies and continuously grown biofilms, we showed that biofilms under the growth conditions applied are more similar to planktonic cells in exponential phase than to those in stationary phase. In the current study, we investigated how these conditions influence the production of virulence factors using a transcriptomic approach. Our results show that biofilms express the type III secretion system, whereas planktonic cells do not. This was confirmed by the detection of PcrV in the cellular and secreted fractions of biofilms, but not in those of planktonic cells. We also detected the type III effector proteins ExoS and ExoT in the biofilm effluent, but not in the supernatants of planktonic cells. Biofilm formation and type III secretion are therefore not mutually exclusive in , and biofilms could play a more active role in virulence than previously thought.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.025551-0
2009-03-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/3/687.html?itemId=/content/journal/micro/10.1099/mic.0.025551-0&mimeType=html&fmt=ahah

References

  1. Alvarez-Ortega, C. & Harwood, C. S. ( 2007; ). Responses of Pseudomonas aeruginosa to low oxygen indicate that growth in the cystic fibrosis lung is by aerobic respiration. Mol Microbiol 65, 153–165.[CrossRef]
    [Google Scholar]
  2. Ando, H., Abe, H., Sugimoto, N. & Tobe, T. ( 2007; ). Maturation of functional type III secretion machinery by activation of anaerobic respiration in enterohaemorrhagic Escherichia coli. Microbiology 153, 464–473.[CrossRef]
    [Google Scholar]
  3. Augustin, D. K., Song, Y., Baek, M. S., Sawa, Y., Singh, G., Taylor, B., Rubio-Mills, A., Flanagan, J. L., Wiener-Kronish, J. P. & Lynch, S. V. ( 2007; ). Presence or absence of lipopolysaccharide O antigens affects type III secretion by Pseudomonas aeruginosa. J Bacteriol 189, 2203–2209.[CrossRef]
    [Google Scholar]
  4. Bleves, S., Soscia, C., Nogueira-Orlandi, P., Lazdunski, A. & Filloux, A. ( 2005; ). Quorum sensing negatively controls type III secretion regulon expression in Pseudomonas aeruginosa PAO1. J Bacteriol 187, 3898–3902.[CrossRef]
    [Google Scholar]
  5. Boes, N., Schreiber, K., Hartig, E., Jaensch, L. & Schobert, M. ( 2006; ). The Pseudomonas aeruginosa universal stress protein PA4352 is essential for surviving anaerobic energy stress. J Bacteriol 188, 6529–6538.[CrossRef]
    [Google Scholar]
  6. Collins, F. S. ( 1992; ). Cystic fibrosis: molecular biology and therapeutic implications. Science 256, 774–779.[CrossRef]
    [Google Scholar]
  7. Corbett, M., Virtue, S., Bell, K., Birch, P., Burr, T., Hyman, L., Lilley, K., Poock, S., Toth, I. & Salmond, G. ( 2005; ). Identification of a new quorum-sensing-controlled virulence factor in Erwinia carotovora subsp. atroseptica secreted via the type II targeting pathway. Mol Plant Microbe Interact 18, 334–342.[CrossRef]
    [Google Scholar]
  8. Costerton, J. W., Stewart, P. S. & Greenberg, E. P. ( 1999; ). Bacterial biofilms: a common cause of persistent infections. Science 284, 1318–1322.[CrossRef]
    [Google Scholar]
  9. Dasgupta, N., Ashare, A., Hunninghake, G. W. & Yahr, T. L. ( 2006; ). Transcriptional induction of the Pseudomonas aeruginosa type III secretion system by low Ca2+ and host cell contact proceeds through two distinct signaling pathways. Infect Immun 74, 3334–3341.[CrossRef]
    [Google Scholar]
  10. Drenkard, E. ( 2003; ). Antimicrobial resistance of Pseudomonas aeruginosa biofilms. Microbes Infect 5, 1213–1219.[CrossRef]
    [Google Scholar]
  11. Filiatrault, M. J., Wagner, V. E., Bushnell, D., Haidaris, C. G., Iglewski, B. H. & Passador, L. ( 2005; ). Effect of anaerobiosis and nitrate on gene expression in Pseudomonas aeruginosa. Infect Immun 73, 3764–3772.[CrossRef]
    [Google Scholar]
  12. Filiatrault, M. J., Picardo, K. F., Ngai, H., Passador, L. & Iglewski, B. H. ( 2006; ). Identification of Pseudomonas aeruginosa genes involved in virulence and anaerobic growth. Infect Immun 74, 4237–4245.[CrossRef]
    [Google Scholar]
  13. Filloux, A., Hachani, A. & Bleves, S. ( 2008; ). The bacterial type VI secretion machine: yet another player for protein transport across membranes. Microbiology 154, 1570–1583.[CrossRef]
    [Google Scholar]
  14. Furukawa, S., Kuchma, S. L. & O'Toole, G. A. ( 2006; ). Keeping their options open: acute versus persistent infections. J Bacteriol 188, 1211–1217.[CrossRef]
    [Google Scholar]
  15. Goodman, A. L., Kulasekara, B., Rietsch, A., Boyd, D., Smith, R. S. & Lory, S. ( 2004; ). A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa. Dev Cell 7, 745–754.[CrossRef]
    [Google Scholar]
  16. Hancock, R. E. & Speert, D. P. ( 2000; ). Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and impact on treatment. Drug Resist Updat 3, 247–255.[CrossRef]
    [Google Scholar]
  17. Hauser, A. R., Cobb, E., Bodi, M., Mariscal, D., Valles, J., Engel, J. N. & Rello, J. ( 2002; ). Type III protein secretion is associated with poor clinical outcomes in patients with ventilator-associated pneumonia caused by Pseudomonas aeruginosa. Crit Care Med 30, 521–528.[CrossRef]
    [Google Scholar]
  18. Hentzer, M., Wu, H., Andersen, J. B., Riedel, K., Rasmussen, T. B., Bagge, N., Kumar, N., Schembri, M. A., Song, Z. & other authors ( 2003; ). Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J 22, 3803–3815.[CrossRef]
    [Google Scholar]
  19. Hentzer, M., Eberl, L. & Givskov, M. ( 2005; ). Transcriptome analysis of Pseudomonas aeruginosa biofilm development: anaerobic respiration and iron limitation. Biofilms 2, 37–61.[CrossRef]
    [Google Scholar]
  20. Hogardt, M., Roeder, M., Schreff, A. M., Eberl, L. & Heesemann, J. ( 2004; ). Expression of Pseudomonas aeruginosa exoS is controlled by quorum sensing and RpoS. Microbiology 150, 843–851.[CrossRef]
    [Google Scholar]
  21. Hornef, M. W., Roggenkamp, A., Geiger, A. M., Hogardt, M., Jacobi, C. A. & Heesemann, J. ( 2000; ). Triggering the ExoS regulon of Pseudomonas aeruginosa: a GFP-reporter analysis of exoenzyme (Exo) S, ExoT and ExoU synthesis. Microb Pathog 29, 329–343.[CrossRef]
    [Google Scholar]
  22. Jelsbak, L., Johansen, H. K., Frost, A. L., Thøgersen, R., Thomsen, L. E., Ciofu, O., Yang, L., Haagensen, J. A., Høiby, N. & Molin, S. ( 2007; ). Molecular epidemiology and dynamics of Pseudomonas aeruginosa populations in lungs of cystic fibrosis patients. Infect Immun 75, 2214–2224.[CrossRef]
    [Google Scholar]
  23. Kirisits, M. J., Margolis, J. J., Purevdorj-Gage, B. L., Vaughan, B., Chopp, D. L., Stoodley, P. & Parsek, M. R. ( 2007; ). Influence of the hydrodynamic environment on quorum sensing in Pseudomonas aeruginosa biofilms. J Bacteriol 189, 8357–8360.[CrossRef]
    [Google Scholar]
  24. Klausen, M., Heydorn, A., Ragas, P., Lambertsen, L., Aaes-Jorgensen, A., Molin, S. & Tolker-Nielsen, T. ( 2003; ). Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol 48, 1511–1524.[CrossRef]
    [Google Scholar]
  25. Kuchma, S. L., Connolly, J. P. & O'Toole, G. A. ( 2005; ). A three-component regulatory system regulates biofilm maturation and type III secretion in Pseudomonas aeruginosa. J Bacteriol 187, 1441–1454.[CrossRef]
    [Google Scholar]
  26. Lam, J., Chan, R., Lam, K. & Costerton, J. W. ( 1980; ). Production of mucoid microcolonies by Pseudomonas aeruginosa within infected lungs in cystic fibrosis. Infect Immun 28, 546–556.
    [Google Scholar]
  27. Lee, B., Haagensen, J. A., Ciofu, O., Andersen, J. B., Hoiby, N. & Molin, S. ( 2005; ). Heterogeneity of biofilms formed by nonmucoid Pseudomonas aeruginosa isolates from patients with cystic fibrosis. J Clin Microbiol 43, 5247–5255.[CrossRef]
    [Google Scholar]
  28. Lee, D. G., Urbach, J. M., Wu, G., Liberati, N. T., Feinbaum, R. L., Miyata, S., Diggins, L. T., He, J., Saucier, M. & other authors ( 2006; ). Genomic analysis reveals that Pseudomonas aeruginosa virulence is combinatorial. Genome Biol 7, R90 [CrossRef]
    [Google Scholar]
  29. Lyczak, J. B., Cannon, C. L. & Pier, G. B. ( 2000; ). Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes Infect 2, 1051–1060.[CrossRef]
    [Google Scholar]
  30. Lyczak, J. B., Cannon, C. L. & Pier, G. B. ( 2002; ). Lung infections associated with cystic fibrosis. Clin Microbiol Rev 15, 194–222.[CrossRef]
    [Google Scholar]
  31. Ma, Q., Zhai, Y., Schneider, J. C., Ramseier, T. M. & Saier, M. H., Jr ( 2003; ). Protein secretion systems of Pseudomonas aeruginosa and P. fluorescens. Biochim Biophys Acta 1611, 223–233.[CrossRef]
    [Google Scholar]
  32. Ma, L., Jackson, K. D., Landry, R. M., Parsek, M. R. & Wozniak, D. J. ( 2006; ). Analysis of Pseudomonas aeruginosa conditional psl variants reveals roles for the Psl polysaccharide in adhesion and maintaining biofilm structure postattachment. J Bacteriol 188, 8213–8221.[CrossRef]
    [Google Scholar]
  33. Ma, L., Lu, H., Sprinkle, A., Parsek, M. R. & Wozniak, D. J. ( 2007; ). Pseudomonas aeruginosa Psl is a galactose- and mannose-rich exopolysaccharide. J Bacteriol 189, 8353–8356.[CrossRef]
    [Google Scholar]
  34. Matz, C., Moreno, A. M., Alhede, M., Manefield, M., Hauser, A. R., Givskov, M. & Kjelleberg, S. ( 2008; ). Pseudomonas aeruginosa uses type III secretion system to kill biofilm-associated amoebae. ISME J 2, 843–852.[CrossRef]
    [Google Scholar]
  35. Mikkelsen, H., Duck, Z., Lilley, K. S. & Welch, M. ( 2007; ). Interrelationships between colonies, biofilms, and planktonic cells of Pseudomonas aeruginosa. J Bacteriol 189, 2411–2416.[CrossRef]
    [Google Scholar]
  36. Mougous, J. D., Cuff, M. E., Raunser, S., Shen, A., Zhou, M., Gifford, C. A., Goodman, A. L., Joachimiak, G., Ordoñez, C. L. & other authors ( 2006; ). A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science 312, 1526–1530.[CrossRef]
    [Google Scholar]
  37. Palmer, K. L., Mashburn, L. M., Singh, P. K. & Whiteley, M. ( 2005; ). Cystic fibrosis sputum supports growth and cues key aspects of Pseudomonas aeruginosa physiology. J Bacteriol 187, 5267–5277.[CrossRef]
    [Google Scholar]
  38. Palmer, K. L., Brown, S. A. & Whiteley, M. ( 2007; ). Membrane-bound nitrate reductase is required for anaerobic growth in cystic fibrosis sputum. J Bacteriol 189, 4449–4455.[CrossRef]
    [Google Scholar]
  39. Parsek, M. R. & Singh, P. K. ( 2003; ). Bacterial biofilms: an emerging link to disease pathogenesis. Annu Rev Microbiol 57, 677–701.[CrossRef]
    [Google Scholar]
  40. Platt, M. D., Schurr, M. J., Sauer, K., Vazquez, G., Kukavica-Ibrulj, I., Potvin, E., Levesque, R. C., Fedynak, A., Brinkman, F. S. & other authors ( 2008; ). Proteomic, microarray, and signature-tagged mutagenesis analyses of anaerobic Pseudomonas aeruginosa at pH 6.5, likely representing chronic, late-stage cystic fibrosis airway conditions. J Bacteriol 190, 2739–2758.[CrossRef]
    [Google Scholar]
  41. Rietsch, A. & Mekalanos, J. J. ( 2006; ). Metabolic regulation of type III secretion gene expression in Pseudomonas aeruginosa. Mol Microbiol 59, 807–820.[CrossRef]
    [Google Scholar]
  42. Rowntree, R. K. & Harris, A. ( 2003; ). The phenotypic consequences of CFTR mutations. Ann Hum Genet 67, 471–485.[CrossRef]
    [Google Scholar]
  43. Roy-Burman, A., Savel, R. H., Racine, S., Swanson, B. L., Revadigar, N. S., Fujimoto, J., Sawa, T., Frank, D. W. & Wiener-Kronish, J. P. ( 2001; ). Type III protein secretion is associated with death in lower respiratory and systemic Pseudomonas aeruginosa infections. J Infect Dis 183, 1767–1774.[CrossRef]
    [Google Scholar]
  44. Rumbaugh, K. P., Griswold, J. A. & Hamood, A. N. ( 2000; ). The role of quorum sensing in the in vivo virulence of Pseudomonas aeruginosa. Microbes Infect 2, 1721–1731.[CrossRef]
    [Google Scholar]
  45. Sakuragi, Y. & Kolter, R. ( 2007; ). Quorum-sensing regulation of the biofilm matrix genes (pel) of Pseudomonas aeruginosa. J Bacteriol 189, 5383–5386.[CrossRef]
    [Google Scholar]
  46. Sauer, K., Camper, A. K., Ehrlich, G. D., Costerton, J. W. & Davies, D. G. ( 2002; ). Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184, 1140–1154.[CrossRef]
    [Google Scholar]
  47. Schaber, J. A., Triffo, W. J., Suh, S. J., Oliver, J. W., Hastert, M. C., Griswold, J. A., Auer, M., Hamood, A. N. & Rumbaugh, K. P. ( 2007; ). Pseudomonas aeruginosa forms biofilms in acute infection independent of cell-to-cell signaling. Infect Immun 75, 3715–3721.[CrossRef]
    [Google Scholar]
  48. Schreiber, K., Boes, N., Eschbach, M., Jaensch, L., Wehland, J., Bjarnsholt, T., Givskov, M., Hentzer, M. & Schobert, M. ( 2006; ). Anaerobic survival of Pseudomonas aeruginosa by pyruvate fermentation requires an Usp-type stress protein. J Bacteriol 188, 659–668.[CrossRef]
    [Google Scholar]
  49. Schuster, M., Lostroh, C. P., Ogi, T. & Greenberg, E. P. ( 2003; ). Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J Bacteriol 185, 2066–2079.[CrossRef]
    [Google Scholar]
  50. Singh, P. K., Parsek, M. R., Greenberg, E. P. & Welsh, M. J. ( 2002; ). A component of innate immunity prevents bacterial biofilm development. Nature 417, 552–555.[CrossRef]
    [Google Scholar]
  51. Smith, E. E., Buckley, D. G., Wu, Z., Saenphimmachak, C., Hoffman, L. R., D'Argenio, D. A., Miller, S. I., Ramsey, B. W., Speert, D. P. & other authors ( 2006; ). Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci U S A 103, 8487–8492.[CrossRef]
    [Google Scholar]
  52. Smyth, G. K. ( 2004; ). Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3
    [Google Scholar]
  53. Somerville, G., Mikoryak, C. A. & Reitzer, L. ( 1999; ). Physiological characterization of Pseudomonas aeruginosa during exotoxin A synthesis: glutamate, iron limitation, and aconitase activity. J Bacteriol 181, 1072–1078.
    [Google Scholar]
  54. Spoering, A. L. & Lewis, K. ( 2001; ). Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials. J Bacteriol 183, 6746–6751.[CrossRef]
    [Google Scholar]
  55. Van Alst, N. E., Picardo, K. F., Iglewski, B. H. & Haidaris, C. G. ( 2007; ). Nitrate sensing and metabolism modulate motility, biofilm formation, and virulence in Pseudomonas aeruginosa. Infect Immun 75, 3780–3790.[CrossRef]
    [Google Scholar]
  56. Van Delden, C. ( 2004; ). Virulence Factors in Pseudomonas aeruginosa. New York: Kluwer Academic/Plenum Publishers.
  57. Ventre, I., Goodman, A. L., Vallet-Gely, I., Vasseur, P., Soscia, C., Molin, S., Bleves, S., Lazdunski, A., Lory, S. & Filloux, A. ( 2006; ). Multiple sensors control reciprocal expression of Pseudomonas aeruginosa regulatory RNA and virulence genes. Proc Natl Acad Sci U S A 103, 171–176.[CrossRef]
    [Google Scholar]
  58. Wagner, V. E., Bushnell, D., Passador, L., Brooks, A. I. & Iglewski, B. H. ( 2003; ). Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment. J Bacteriol 185, 2080–2095.[CrossRef]
    [Google Scholar]
  59. Waite, R. D., Papakonstantinopoulou, A., Littler, E. & Curtis, M. A. ( 2005; ). Transcriptome analysis of Pseudomonas aeruginosa growth: comparison of gene expression in planktonic cultures and developing and mature biofilms. J Bacteriol 187, 6571–6576.[CrossRef]
    [Google Scholar]
  60. Waite, R. D., Paccanaro, A., Papakonstantinopoulou, A., Hurst, J. M., Saqi, M., Littler, E. & Curtis, M. A. ( 2006; ). Clustering of Pseudomonas aeruginosa transcriptomes from planktonic cultures, developing and mature biofilms reveals distinct expression profiles. BMC Genomics 7, 162 [CrossRef]
    [Google Scholar]
  61. Whiteley, M., Bangera, M. G., Bumgarner, R. E., Parsek, M. R., Teitzel, G. M., Lory, S. & Greenberg, E. P. ( 2001; ). Gene expression in Pseudomonas aeruginosa biofilms. Nature 413, 860–864.[CrossRef]
    [Google Scholar]
  62. Williams, H. D., Zlosnik, J. E. & Ryall, B. ( 2007; ). Oxygen, cyanide and energy generation in the cystic fibrosis pathogen Pseudomonas aeruginosa. Adv Microb Physiol 52, 1–71.
    [Google Scholar]
  63. Worlitzsch, D., Tarran, R., Ulrich, M., Schwab, U., Cekici, A., Meyer, K. C., Birrer, P., Bellon, G., Berger, J. & other authors ( 2002; ). Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J Clin Invest 109, 317–325.[CrossRef]
    [Google Scholar]
  64. Wu, M., Guina, T., Brittnacher, M., Nguyen, H., Eng, J. & Miller, S. I. ( 2005; ). The Pseudomonas aeruginosa proteome during anaerobic growth. J Bacteriol 187, 8185–8190.[CrossRef]
    [Google Scholar]
  65. Yahr, T. L. & Greenberg, E. P. ( 2004; ). The genetic basis for the commitment to chronic versus acute infection in Pseudomonas aeruginosa. Mol Cell 16, 497–498.[CrossRef]
    [Google Scholar]
  66. Yang, L., Haagensen, J. A., Jelsbak, L., Johansen, H. K., Sternberg, C., Hoiby, N. & Molin, S. ( 2008; ). In situ growth rates and biofilm development of Pseudomonas aeruginosa populations in chronic lung infections. J Bacteriol 190, 2767–2776.[CrossRef]
    [Google Scholar]
  67. Yoon, S. S., Hennigan, R. F., Hilliard, G. M., Ochsner, U. A., Parvatiyar, K., Kamani, M. C., Allen, H. L., DeKievit, T. R., Gardner, P. R. & other authors ( 2002; ). Pseudomonas aeruginosa anaerobic respiration in biofilms: relationships to cystic fibrosis pathogenesis. Dev Cell 3, 593–603.[CrossRef]
    [Google Scholar]
  68. Zumft, W. G. ( 2004; ). Denitrification by pseudomonads: control and assembly processes. In Pseudomonas; Biosynthesis of Macromolecules and Molecular Metabolism, pp. 193–227. Edited by J. L. Ramos. New York: Kluwer Academic/Plenum Publishers.
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.025551-0
Loading
/content/journal/micro/10.1099/mic.0.025551-0
Loading

Data & Media loading...

Supplements

Effect of surface growth in colonies [ PDF] (96 kb) MASCOT data from LC-MS/MS analysis of secreted protein from planktonic cells in stationary phase (PS) and 3 day biofilms (B3d) [ Excel file] (367 kb)

PDF

Effect of surface growth in colonies [ PDF] (96 kb) MASCOT data from LC-MS/MS analysis of secreted protein from planktonic cells in stationary phase (PS) and 3 day biofilms (B3d) [ Excel file] (367 kb)

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error