1887

Abstract

The obligate anaerobe is a normal resident of the human gastrointestinal tract. The clinically derived strain NCTC 9343 produces an extensive array of extracellular polysaccharides (EPS), including antigenically distinct large, small and micro- capsules. The genome of NCTC 9343 encodes multiple gene clusters potentially involved in the biosynthesis of EPS, eight of which are implicated in production of the antigenically variable micro-capsule. We have developed a rapid and robust method for generating marked and markerless deletions, together with efficient electroporation using unmodified plasmid DNA to enable complementation of mutations. We show that deletion of a putative homologue prevents production of high-molecular-mass polysaccharides (HMMPS), which form the micro-capsule. This observation suggests that micro-capsule HMMPS constitute the distal component of LPS in . The long chain length of this polysaccharide is strikingly different from classical enteric O-antigen, which consists of short-chain polysaccharides. We also demonstrate that deletion of a putative homologue prevents expression of the phase-variable large capsule and that expression can be restored by complementation. This suggests that synthesis of the large capsule is mechanistically equivalent to production of group 1 and 4 capsules.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.025361-0
2009-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/4/1039.html?itemId=/content/journal/micro/10.1099/mic.0.025361-0&mimeType=html&fmt=ahah

References

  1. Baughn A. D., Malamy M. H. 2002; A mitochondrial-like aconitase in the bacterium Bacteroides fragilis : implications for the evolution of the mitochondrial Krebs cycle. Proc Natl Acad Sci U S A 99:4662–4667
    [Google Scholar]
  2. Beckmann I., van Eijk H. G., Meisel-Mikolajczyk F., Wallenburg H. C. 1989; Detection of 2-keto-3-deoxyoctonate in endotoxins isolated from six reference strains of the Bacteroides fragilis group. Int J Biochem 21:661–666
    [Google Scholar]
  3. Begg K. J., Donachie W. D. 1978; Changes in cell size and shape in thymine-requiring Escherichia coli associated with growth in low concentrations of thymine. J Bacteriol 133:452–458
    [Google Scholar]
  4. Cerdeño-Tárraga A. M., Patrick S., Crossman L. C., Blakely G., Abratt V., Lennard N., Poxton I., Duerden B., Harris B. other authors 2005; Extensive DNA inversions in the Bacteroides fragilis genome control variable gene expression. Science 307:1463–1465
    [Google Scholar]
  5. Chatzidaki-Livanis M., Coyne M. J., Roche-Hakansson H., Comstock L. E. 2008; Expression of a uniquely regulated extracellular polysaccharide confers a large-capsule phenotype to Bacteroides fragilis . J Bacteriol 190:1020–1026
    [Google Scholar]
  6. Coyne M. J., Kalka-Moll W., Tzianabos A. O., Kasper D. L., Comstock L. E. 2000; Bacteroides fragilis NCTC9343 produces at least three distinct capsular polysaccharides: cloning, characterization, and reassignment of polysaccharide B and C biosynthesis loci. Infect Immun 68:6176–6181
    [Google Scholar]
  7. Coyne M. J., Weinacht K. G., Krinos C. M., Comstock L. E. 2003; Mpi recombinase globally modulates the surface architecture of a human commensal bacterium. Proc Natl Acad Sci U S A 100:10446–10451
    [Google Scholar]
  8. Coyne M. J., Chatzidaki-Livanis M., Paoletti L. C., Comstock L. E. 2008; Role of glycan synthesis in colonization of the mammalian gut by the bacterial symbiont Bacteroides fragilis . Proc Natl Acad Sci U S A 105:13099–13104
    [Google Scholar]
  9. Cruickshank R. 1965 Medical Microbiology: a Guide to the Laboratory Diagnosis and Control of Infection , 11th edn. pp 657–660 Edinburgh: E. & S. Livingstone Ltd;
  10. Delahooke D. M., Barclay G. R., Poxton I. R. 1995; A re-appraisal of the biological activity of Bacteroides LPS. J Med Microbiol 42:102–112
    [Google Scholar]
  11. Dryden D. T. 2006; DNA mimicry by proteins and the control of enzymatic activity on DNA. Trends Biotechnol 24:378–382
    [Google Scholar]
  12. Fletcher H. M., Schenkein H. A., Morgan R. M., Bailey K. A., Berry C. R., Macrina F. L. 1995; Virulence of a Porphyromonas gingivalis W83 mutant defective in the prtH gene. Infect Immun 63:1521–1528
    [Google Scholar]
  13. Franco A. V., Liu D., Reeves P. R. 1998; The wzz ( cld ) protein in Escherichia coli : amino acid sequence variation determines O-antigen chain length specificity. J Bacteriol 180:2670–2675
    [Google Scholar]
  14. Hoffman L. M., Haskins D. J., Jendrisak J. 2002; Type I inhibitor improves transformation efficiencies by blocking type I restriction and modification systems in vivo . EPICENTRE Forum 9:8
    [Google Scholar]
  15. Krinos C. M., Coyne M. J., Weinacht K. G., Tzianabos A. O., Kasper D. L., Comstock L. E. 2001; Extensive surface diversity of a commensal microorganism by multiple DNA inversions. Nature 414:555–558
    [Google Scholar]
  16. Krüger D. H., Schroeder C., Hansen S., Rosenthal H. A. 1977; Active protection by bacteriophages T3 and T7 against E. coli B- and K-specific restriction of their DNA. Mol Gen Genet 153:99–106
    [Google Scholar]
  17. Krüger D. H., Hansen S., Reuter M. 1983; The ocr + gene function of bacteriophages T3 and T7 counteracts the Salmonella typhimurium DNA restriction systems SA and SB. J Virol 45:1147–1149
    [Google Scholar]
  18. Li L. Y., Shoemaker N. B., Salyers A. A. 1995; Location and characteristics of the transfer region of a Bacteroides conjugative transposon and regulation of transfer genes. J Bacteriol 177:4992–4999
    [Google Scholar]
  19. Lindberg A. A., Weintraub A., Zähringer U., Rietschel E. T. 1990; Structure-activity relationships in lipopolysaccharides of Bacteroides fragilis . Rev Infect Dis 12 :Suppl. 2S133–S141
    [Google Scholar]
  20. Liu C. H., Lee S. M., Vanlare J. M., Kasper D. L., Mazmanian S. K. 2008; Regulation of surface architecture by symbiotic bacteria mediates host colonization. Proc Natl Acad Sci U S A 105:3951–3956
    [Google Scholar]
  21. Lutton D. A., Patrick S., Crockard A. D., Stewart L. D., Larkin M. J., Dermott E., McNeill T. A. 1991; Flow cytometric analysis of within-strain variation in polysaccharide expression by Bacteroides fragilis by use of murine monoclonal antibodies. J Med Microbiol 35:229–237
    [Google Scholar]
  22. Morona R., Van Den Bosch L., Daniels C. 2000; Evaluation of Wzz/MPA1/MPA2 proteins based on the presence of coiled-coil regions. Microbiology 146:1–4
    [Google Scholar]
  23. Pantosti A., Colangeli R., Tzianabos A. O., Kasper D. L. 1995; Monoclonal antibodies to detect capsular diversity among Bacteroides fragilis isolates. J Clin Microbiol 33:2647–2652
    [Google Scholar]
  24. Patrick S. 1993; The virulence of Bacteroides fragilis . Rev Med Microbiol 4:40–49
    [Google Scholar]
  25. Patrick S. 1997; Variation in Bacteroides fragilis surface structures. In Anaerobic Pathogens pp 19–30 Edited by Eley A. R., Bennet K. W. Sheffield: Sheffield Academic Press;
    [Google Scholar]
  26. Patrick S. 2002; Bacteroides . In Molecular Medical Microbiology pp 1921–1948 Edited by Sussman M. London: Academic Press;
    [Google Scholar]
  27. Patrick S., Duerden B. I. 2006; Gram-negative non-spore forming obligate anaerobes. In Principles and Practice of Clinical Bacteriology pp 541–556 Edited by Gillespie S. H., Hawkey P. London: Wiley;
    [Google Scholar]
  28. Patrick S., Reid J. H. 1983; Separation of capsulate and non-capsulate Bacteroides fragilis on a discontinuous density gradient. J Med Microbiol 16:239–241
    [Google Scholar]
  29. Patrick S. J., Reid J. H., Coffey A. 1986; Capsulation of in vitro and in vivo grown Bacteroides species. J Gen Microbiol 132:1099–1109
    [Google Scholar]
  30. Patrick S., Stewart L. D., Damani N., Wilson K. G., Lutton D. A., Larkin M. J., Poxton I., Brown R. 1995; Immunological detection of Bacteroides fragilis in clinical samples. J Med Microbiol 43:99–109
    [Google Scholar]
  31. Patrick S., Parkhill J., McCoy L., Lennard N., Larkin M., Sczaniecka M., Blakely G. 2003; Multiple inverted DNA repeats of Bacteroides fragilis that control polysaccharide antigenic variation are similar to the hin region inverted repeats of Salmonella typhimurium . Microbiology 149:915–924
    [Google Scholar]
  32. Pósfai G., Kolisnychenko V., Bereczki Z., Blattner F. R. 1999; Markerless gene replacement in Escherichia coli stimulated by a double-strand break in the chromosome. Nucleic Acids Res 27:4409–4415
    [Google Scholar]
  33. Poxton I. R., Brown R. 1986; Immunochemistry of the surface carbohydrate antigens of Bacteroides fragilis and definition of a common antigen. J Gen Microbiol 132:2475–2481
    [Google Scholar]
  34. Redondo M. C., Arbo M. D., Grindlinger J., Snydman D. R. 1995; Attributable mortality of bacteremia associated with the Bacteroides fragilis group. Clin Infect Dis 20:1492–1496
    [Google Scholar]
  35. Reid J. H., Patrick S. 1984; Phagocytic and serum killing of capsulate and non-capsulate Bacteroides fragilis . J Med Microbiol 17:247–257
    [Google Scholar]
  36. Reid J. H., Patrick S., Tabaqchali S. 1987; Immunochemical characterization of a polysaccharide antigen of Bacteroides fragilis with an IgM monoclonal antibody. J Gen Microbiol 133:171–179
    [Google Scholar]
  37. Salyers A. A., Bonheyo G., Shoemaker N. B. 2000; Starting a new genetic system: lessons from Bacteroides . Methods 20:35–46
    [Google Scholar]
  38. Sheng H., Lim J. Y., Watkins M. K., Minnich S. A., Hovde C. J. 2008; Characterization of an Escherichia coli O157 : H7 O-antigen deletion mutant and effect of the deletion on bacterial persistence in the mouse intestine and colonization at the bovine terminal rectal mucosa. Appl Environ Microbiol 74:5015–5022
    [Google Scholar]
  39. Simon R., Priefer U., Pühler A. 1983; Broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Biotechnology 1:784–791
    [Google Scholar]
  40. Sutherland I. W. 1977 Surface Carbohydrates of the Prokaryotic Cell London: Academic Press;
  41. Titheradge A. J., King J., Ryu J., Murray N. E. 2001; Families of restriction enzymes: an analysis prompted by molecular and genetic data for type ID restriction and modification systems. Nucleic Acids Res 29:4195–4205
    [Google Scholar]
  42. Tocilj A., Munger C., Proteau A., Morona R., Purins L., Ajamian E., Wagner J., Papadopoulos M., Van Den Bosch L. other authors 2008; Bacterial polysaccharide co-polymerases share a common framework for control of polymer length. Nat Struct Mol Biol 15:130–138
    [Google Scholar]
  43. Valentine P. J., Shoemaker N. B., Salyers A. A. 1988; Mobilization of Bacteroides plasmids by Bacteroides conjugal elements. J Bacteriol 170:1319–1324
    [Google Scholar]
  44. van Tassell R. L., Wilkins T. D. 1978; Isolation of auxotrophs of Bacteroides fragilis . Can J Microbiol 24:1619–1621
    [Google Scholar]
  45. Vimr E. R., Steenbergen S. M. 2006; Mobile contingency locus controlling Escherichia coli K1 polysialic acid capsule acetylation. Mol Microbiol 60:828–837
    [Google Scholar]
  46. Walkinshaw M. D., Taylor P., Sturrock S. S., Atanasiu C., Berge T., Henderson R. M., Edwardson J. M., Dryden D. T. 2002; Structure of Ocr from bacteriophage T7, a protein that mimics B-form DNA. Mol Cell 9:187–194
    [Google Scholar]
  47. Whitfield C. 2006; Biosynthesis and assembly of capsular polysaccharides in Escherichia coli . Annu Rev Biochem 75:39–68
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.025361-0
Loading
/content/journal/micro/10.1099/mic.0.025361-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error