1887

Abstract

The obligate anaerobe is a normal resident of the human gastrointestinal tract. The clinically derived strain NCTC 9343 produces an extensive array of extracellular polysaccharides (EPS), including antigenically distinct large, small and micro- capsules. The genome of NCTC 9343 encodes multiple gene clusters potentially involved in the biosynthesis of EPS, eight of which are implicated in production of the antigenically variable micro-capsule. We have developed a rapid and robust method for generating marked and markerless deletions, together with efficient electroporation using unmodified plasmid DNA to enable complementation of mutations. We show that deletion of a putative homologue prevents production of high-molecular-mass polysaccharides (HMMPS), which form the micro-capsule. This observation suggests that micro-capsule HMMPS constitute the distal component of LPS in . The long chain length of this polysaccharide is strikingly different from classical enteric O-antigen, which consists of short-chain polysaccharides. We also demonstrate that deletion of a putative homologue prevents expression of the phase-variable large capsule and that expression can be restored by complementation. This suggests that synthesis of the large capsule is mechanistically equivalent to production of group 1 and 4 capsules.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.025361-0
2009-04-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/4/1039.html?itemId=/content/journal/micro/10.1099/mic.0.025361-0&mimeType=html&fmt=ahah

References

  1. Baughn, A. D. & Malamy, M. H. ( 2002; ). A mitochondrial-like aconitase in the bacterium Bacteroides fragilis: implications for the evolution of the mitochondrial Krebs cycle. Proc Natl Acad Sci U S A 99, 4662–4667.[CrossRef]
    [Google Scholar]
  2. Beckmann, I., van Eijk, H. G., Meisel-Mikolajczyk, F. & Wallenburg, H. C. ( 1989; ). Detection of 2-keto-3-deoxyoctonate in endotoxins isolated from six reference strains of the Bacteroides fragilis group. Int J Biochem 21, 661–666.[CrossRef]
    [Google Scholar]
  3. Begg, K. J. & Donachie, W. D. ( 1978; ). Changes in cell size and shape in thymine-requiring Escherichia coli associated with growth in low concentrations of thymine. J Bacteriol 133, 452–458.
    [Google Scholar]
  4. Cerdeño-Tárraga, A. M., Patrick, S., Crossman, L. C., Blakely, G., Abratt, V., Lennard, N., Poxton, I., Duerden, B., Harris, B. & other authors ( 2005; ). Extensive DNA inversions in the Bacteroides fragilis genome control variable gene expression. Science 307, 1463–1465.[CrossRef]
    [Google Scholar]
  5. Chatzidaki-Livanis, M., Coyne, M. J., Roche-Hakansson, H. & Comstock, L. E. ( 2008; ). Expression of a uniquely regulated extracellular polysaccharide confers a large-capsule phenotype to Bacteroides fragilis. J Bacteriol 190, 1020–1026.[CrossRef]
    [Google Scholar]
  6. Coyne, M. J., Kalka-Moll, W., Tzianabos, A. O., Kasper, D. L. & Comstock, L. E. ( 2000; ). Bacteroides fragilis NCTC9343 produces at least three distinct capsular polysaccharides: cloning, characterization, and reassignment of polysaccharide B and C biosynthesis loci. Infect Immun 68, 6176–6181.[CrossRef]
    [Google Scholar]
  7. Coyne, M. J., Weinacht, K. G., Krinos, C. M. & Comstock, L. E. ( 2003; ). Mpi recombinase globally modulates the surface architecture of a human commensal bacterium. Proc Natl Acad Sci U S A 100, 10446–10451.[CrossRef]
    [Google Scholar]
  8. Coyne, M. J., Chatzidaki-Livanis, M., Paoletti, L. C. & Comstock, L. E. ( 2008; ). Role of glycan synthesis in colonization of the mammalian gut by the bacterial symbiont Bacteroides fragilis. Proc Natl Acad Sci U S A 105, 13099–13104.[CrossRef]
    [Google Scholar]
  9. Cruickshank, R. ( 1965; ). Medical Microbiology: a Guide to the Laboratory Diagnosis and Control of Infection, 11th edn, pp. 657–660. Edinburgh: E. & S. Livingstone Ltd.
  10. Delahooke, D. M., Barclay, G. R. & Poxton, I. R. ( 1995; ). A re-appraisal of the biological activity of Bacteroides LPS. J Med Microbiol 42, 102–112.[CrossRef]
    [Google Scholar]
  11. Dryden, D. T. ( 2006; ). DNA mimicry by proteins and the control of enzymatic activity on DNA. Trends Biotechnol 24, 378–382.[CrossRef]
    [Google Scholar]
  12. Fletcher, H. M., Schenkein, H. A., Morgan, R. M., Bailey, K. A., Berry, C. R. & Macrina, F. L. ( 1995; ). Virulence of a Porphyromonas gingivalis W83 mutant defective in the prtH gene. Infect Immun 63, 1521–1528.
    [Google Scholar]
  13. Franco, A. V., Liu, D. & Reeves, P. R. ( 1998; ). The wzz (cld) protein in Escherichia coli: amino acid sequence variation determines O-antigen chain length specificity. J Bacteriol 180, 2670–2675.
    [Google Scholar]
  14. Hoffman, L. M., Haskins, D. J. & Jendrisak, J. ( 2002; ). Type I inhibitor improves transformation efficiencies by blocking type I restriction and modification systems in vivo. EPICENTRE Forum 9, 8
    [Google Scholar]
  15. Krinos, C. M., Coyne, M. J., Weinacht, K. G., Tzianabos, A. O., Kasper, D. L. & Comstock, L. E. ( 2001; ). Extensive surface diversity of a commensal microorganism by multiple DNA inversions. Nature 414, 555–558.[CrossRef]
    [Google Scholar]
  16. Krüger, D. H., Schroeder, C., Hansen, S. & Rosenthal, H. A. ( 1977; ). Active protection by bacteriophages T3 and T7 against E. coli B- and K-specific restriction of their DNA. Mol Gen Genet 153, 99–106.[CrossRef]
    [Google Scholar]
  17. Krüger, D. H., Hansen, S. & Reuter, M. ( 1983; ). The ocr + gene function of bacteriophages T3 and T7 counteracts the Salmonella typhimurium DNA restriction systems SA and SB. J Virol 45, 1147–1149.
    [Google Scholar]
  18. Li, L. Y., Shoemaker, N. B. & Salyers, A. A. ( 1995; ). Location and characteristics of the transfer region of a Bacteroides conjugative transposon and regulation of transfer genes. J Bacteriol 177, 4992–4999.
    [Google Scholar]
  19. Lindberg, A. A., Weintraub, A., Zähringer, U. & Rietschel, E. T. ( 1990; ). Structure-activity relationships in lipopolysaccharides of Bacteroides fragilis. Rev Infect Dis 12 (Suppl. 2), S133–S141.[CrossRef]
    [Google Scholar]
  20. Liu, C. H., Lee, S. M., Vanlare, J. M., Kasper, D. L. & Mazmanian, S. K. ( 2008; ). Regulation of surface architecture by symbiotic bacteria mediates host colonization. Proc Natl Acad Sci U S A 105, 3951–3956.[CrossRef]
    [Google Scholar]
  21. Lutton, D. A., Patrick, S., Crockard, A. D., Stewart, L. D., Larkin, M. J., Dermott, E. & McNeill, T. A. ( 1991; ). Flow cytometric analysis of within-strain variation in polysaccharide expression by Bacteroides fragilis by use of murine monoclonal antibodies. J Med Microbiol 35, 229–237.[CrossRef]
    [Google Scholar]
  22. Morona, R., Van Den Bosch, L. & Daniels, C. ( 2000; ). Evaluation of Wzz/MPA1/MPA2 proteins based on the presence of coiled-coil regions. Microbiology 146, 1–4.
    [Google Scholar]
  23. Pantosti, A., Colangeli, R., Tzianabos, A. O. & Kasper, D. L. ( 1995; ). Monoclonal antibodies to detect capsular diversity among Bacteroides fragilis isolates. J Clin Microbiol 33, 2647–2652.
    [Google Scholar]
  24. Patrick, S. ( 1993; ). The virulence of Bacteroides fragilis. Rev Med Microbiol 4, 40–49.[CrossRef]
    [Google Scholar]
  25. Patrick, S. ( 1997; ). Variation in Bacteroides fragilis surface structures. In Anaerobic Pathogens, pp. 19–30. Edited by A. R. Eley & K. W. Bennet. Sheffield: Sheffield Academic Press.
  26. Patrick, S. ( 2002; ). Bacteroides. In Molecular Medical Microbiology, pp. 1921–1948. Edited by M. Sussman. London: Academic Press.
  27. Patrick, S. & Duerden, B. I. ( 2006; ). Gram-negative non-spore forming obligate anaerobes. In Principles and Practice of Clinical Bacteriology, pp. 541–556. Edited by S. H. Gillespie & P. Hawkey. London: Wiley.
  28. Patrick, S. & Reid, J. H. ( 1983; ). Separation of capsulate and non-capsulate Bacteroides fragilis on a discontinuous density gradient. J Med Microbiol 16, 239–241.[CrossRef]
    [Google Scholar]
  29. Patrick, S. J., Reid, J. H. & Coffey, A. ( 1986; ). Capsulation of in vitro and in vivo grown Bacteroides species. J Gen Microbiol 132, 1099–1109.
    [Google Scholar]
  30. Patrick, S., Stewart, L. D., Damani, N., Wilson, K. G., Lutton, D. A., Larkin, M. J., Poxton, I. & Brown, R. ( 1995; ). Immunological detection of Bacteroides fragilis in clinical samples. J Med Microbiol 43, 99–109.[CrossRef]
    [Google Scholar]
  31. Patrick, S., Parkhill, J., McCoy, L., Lennard, N., Larkin, M., Sczaniecka, M. & Blakely, G. ( 2003; ). Multiple inverted DNA repeats of Bacteroides fragilis that control polysaccharide antigenic variation are similar to the hin region inverted repeats of Salmonella typhimurium. Microbiology 149, 915–924.[CrossRef]
    [Google Scholar]
  32. Pósfai, G., Kolisnychenko, V., Bereczki, Z. & Blattner, F. R. ( 1999; ). Markerless gene replacement in Escherichia coli stimulated by a double-strand break in the chromosome. Nucleic Acids Res 27, 4409–4415.[CrossRef]
    [Google Scholar]
  33. Poxton, I. R. & Brown, R. ( 1986; ). Immunochemistry of the surface carbohydrate antigens of Bacteroides fragilis and definition of a common antigen. J Gen Microbiol 132, 2475–2481.
    [Google Scholar]
  34. Redondo, M. C., Arbo, M. D., Grindlinger, J. & Snydman, D. R. ( 1995; ). Attributable mortality of bacteremia associated with the Bacteroides fragilis group. Clin Infect Dis 20, 1492–1496.[CrossRef]
    [Google Scholar]
  35. Reid, J. H. & Patrick, S. ( 1984; ). Phagocytic and serum killing of capsulate and non-capsulate Bacteroides fragilis. J Med Microbiol 17, 247–257.[CrossRef]
    [Google Scholar]
  36. Reid, J. H., Patrick, S. & Tabaqchali, S. ( 1987; ). Immunochemical characterization of a polysaccharide antigen of Bacteroides fragilis with an IgM monoclonal antibody. J Gen Microbiol 133, 171–179.
    [Google Scholar]
  37. Salyers, A. A., Bonheyo, G. & Shoemaker, N. B. ( 2000; ). Starting a new genetic system: lessons from Bacteroides. Methods 20, 35–46.[CrossRef]
    [Google Scholar]
  38. Sheng, H., Lim, J. Y., Watkins, M. K., Minnich, S. A. & Hovde, C. J. ( 2008; ). Characterization of an Escherichia coli O157 : H7 O-antigen deletion mutant and effect of the deletion on bacterial persistence in the mouse intestine and colonization at the bovine terminal rectal mucosa. Appl Environ Microbiol 74, 5015–5022.[CrossRef]
    [Google Scholar]
  39. Simon, R., Priefer, U. & Pühler, A. ( 1983; ). Broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Biotechnology 1, 784–791.[CrossRef]
    [Google Scholar]
  40. Sutherland, I. W. ( 1977; ). Surface Carbohydrates of the Prokaryotic Cell. London: Academic Press.
  41. Titheradge, A. J., King, J., Ryu, J. & Murray, N. E. ( 2001; ). Families of restriction enzymes: an analysis prompted by molecular and genetic data for type ID restriction and modification systems. Nucleic Acids Res 29, 4195–4205.[CrossRef]
    [Google Scholar]
  42. Tocilj, A., Munger, C., Proteau, A., Morona, R., Purins, L., Ajamian, E., Wagner, J., Papadopoulos, M., Van Den Bosch, L. & other authors ( 2008; ). Bacterial polysaccharide co-polymerases share a common framework for control of polymer length. Nat Struct Mol Biol 15, 130–138.[CrossRef]
    [Google Scholar]
  43. Valentine, P. J., Shoemaker, N. B. & Salyers, A. A. ( 1988; ). Mobilization of Bacteroides plasmids by Bacteroides conjugal elements. J Bacteriol 170, 1319–1324.
    [Google Scholar]
  44. van Tassell, R. L. & Wilkins, T. D. ( 1978; ). Isolation of auxotrophs of Bacteroides fragilis. Can J Microbiol 24, 1619–1621.[CrossRef]
    [Google Scholar]
  45. Vimr, E. R. & Steenbergen, S. M. ( 2006; ). Mobile contingency locus controlling Escherichia coli K1 polysialic acid capsule acetylation. Mol Microbiol 60, 828–837.[CrossRef]
    [Google Scholar]
  46. Walkinshaw, M. D., Taylor, P., Sturrock, S. S., Atanasiu, C., Berge, T., Henderson, R. M., Edwardson, J. M. & Dryden, D. T. ( 2002; ). Structure of Ocr from bacteriophage T7, a protein that mimics B-form DNA. Mol Cell 9, 187–194.[CrossRef]
    [Google Scholar]
  47. Whitfield, C. ( 2006; ). Biosynthesis and assembly of capsular polysaccharides in Escherichia coli. Annu Rev Biochem 75, 39–68.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.025361-0
Loading
/content/journal/micro/10.1099/mic.0.025361-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error