1887

Abstract

Secreted proteins play an important part in the pathogenicity of , and are the primary source of vaccine and diagnostic candidates. A majority of these proteins are exported via the signal peptidase I-dependent pathway, and have a signal peptide that is cleaved off during the secretion process. Sequence similarities within signal peptides have spurred the development of several algorithms for predicting their presence as well as the respective cleavage sites. For proteins exported via this pathway, algorithms exist for eukaryotes, and for Gram-negative and Gram-positive bacteria. However, the unique structure of the mycobacterial membrane raises the question of whether the existing algorithms are suitable for predicting signal peptides within mycobacterial proteins. In this work, we have evaluated the performance of nine signal peptide prediction algorithms on a positive validation set, consisting of 57 proteins with a verified signal peptide and cleavage site, and a negative set, consisting of 61 proteins that have an N-terminal sequence that confirms the annotated translational start site. We found the hidden Markov model of SignalP v3.0 to be the best-performing algorithm for predicting the presence of a signal peptide in mycobacterial proteins. It predicted no false positives or false negatives, and predicted a correct cleavage site for 45 of the 57 proteins in the positive set. Based on these results, we used the hidden Markov model of SignalP v3.0 to analyse the 10 available annotated proteomes of mycobacterial species, including annotations of H37Rv from the Wellcome Trust Sanger Institute and the J. Craig Venter Institute (JCVI). When excluding proteins with transmembrane regions among the proteins predicted to harbour a signal peptide, we found between 7.8 and 10.5 % of the proteins in the proteomes to be putative secreted proteins. Interestingly, we observed a consistent difference in the percentage of predicted proteins between the Sanger Institute and JCVI. We have determined the most valuable algorithm for predicting signal peptidase I-processed proteins of , and used this algorithm to estimate the number of mycobacterial proteins with the potential to be exported via this pathway.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.025270-0
2009-07-01
2020-08-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/7/2375.html?itemId=/content/journal/micro/10.1099/mic.0.025270-0&mimeType=html&fmt=ahah

References

  1. Abdallah A. M., Gey van Pittius N. C., Champion P. A., Cox J., Luirink J., Vandenbroucke-Grauls C. M., Appelmelk B. J., Bitter W.. 2007; Type VII secretion – mycobacteria show the way. Nat Rev Microbiol5:883–891
    [Google Scholar]
  2. Andersen P.. 2007; Vaccine strategies against latent tuberculosis infection. Trends Microbiol15:7–13
    [Google Scholar]
  3. Bendtsen J. D., Nielsen H., von Heijne G., Brunak S.. 2004; Improved prediction of signal peptides: SignalP 3.0. J Mol Biol340:783–795
    [Google Scholar]
  4. Camus J. C., Pryor M. J., Medigue C., Cole S. T.. 2002; Re-annotation of the genome sequence of Mycobacterium tuberculosis H37Rv. Microbiology148:2967–2973
    [Google Scholar]
  5. Chou K. C.. 2002; Prediction of protein signal sequences. Curr Protein Pept Sci3:615–622
    [Google Scholar]
  6. Chou K. C., Shen H. B.. 2007; Signal-CF: a subsite-coupled and window-fusing approach for predicting signal peptides. Biochem Biophys Res Commun357:633–640
    [Google Scholar]
  7. Chou K. C., Shen H. B.. 2008; Cell-PLoc: a package of Web servers for predicting subcellular localization of proteins in various organisms. Nat Protoc3:153–162
    [Google Scholar]
  8. Cole S. T., Brosch R., Parkhill J., Garnier T., Churcher C., Harris D., Gordon S. V., Eiglmeier K., Gas S.. other authors 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature393:537–544
    [Google Scholar]
  9. De Bruyn J., Bosmans R., Turneer M., Weckx M., Nyabenda J., Van Vooren J. P., Falmagne P., Wiker H. G., Harboe M.. 1987; Purification, partial characterization, and identification of a skin-reactive protein antigen of Mycobacterium bovis BCG. Infect Immun55:245–252
    [Google Scholar]
  10. de Souza G. A., Målen H., Søfteland T., Sælensminde G., Prasad S., Jonassen I., Wiker H. G.. 2008; High accuracy mass spectrometry analysis as a tool to verify and improve gene annotation using Mycobacterium tuberculosis as an example. BMC Genomics9:316
    [Google Scholar]
  11. Fariselli P., Finocchiaro G., Casadio R.. 2003; SPEPlip: the detection of signal peptide and lipoprotein cleavage sites. Bioinformatics19:2498–2499
    [Google Scholar]
  12. Harboe M., Nagai S., Patarroyo M. E., Torres M. L., Ramirez C., Cruz N.. 1986; Properties of proteins MPB64, MPB70, and MPB80 of Mycobacterium bovis BCG. Infect Immun52:293–302
    [Google Scholar]
  13. Harth G., Clemens D. L., Horwitz M. A.. 1994; Glutamine synthetase of Mycobacterium tuberculosis: extracellular release and characterization of its enzymatic activity. Proc Natl Acad Sci U S A91:9342–9346
    [Google Scholar]
  14. Heimbeck J.. 1948; BCG vaccination of nurses. Tubercle29:84–88
    [Google Scholar]
  15. Juncker A. S., Willenbrock H., Von Heijne G., Brunak S., Nielsen H., Krogh A.. 2003; Prediction of lipoprotein signal peptides in Gram-negative bacteria. Protein Sci12:1652–1662
    [Google Scholar]
  16. Käll L., Krogh A., Sonnhammer E. L.. 2004; A combined transmembrane topology and signal peptide prediction method. J Mol Biol338:1027–1036
    [Google Scholar]
  17. Krogh A., Larsson B., von Heijne G., Sonnhammer E. L.. 2001; Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol305:567–580
    [Google Scholar]
  18. Lee B. Y., Hefta S. A., Brennan P. J.. 1992; Characterization of the major membrane protein of virulent Mycobacterium tuberculosis. Infect Immun60:2066–2074
    [Google Scholar]
  19. Li L., Bannantine J. P., Zhang Q., Amonsin A., May B. J., Alt D., Banerji N., Kanjilal S., Kapur V.. 2005; The complete genome sequence of Mycobacterium avium subspecies paratuberculosis. Proc Natl Acad Sci U S A102:12344–12349
    [Google Scholar]
  20. Målen H., Berven F. S., Fladmark K. E., Wiker H. G.. 2007; Comprehensive analysis of exported proteins from Mycobacterium tuberculosis H37Rv. Proteomics7:1702–1718
    [Google Scholar]
  21. Målen H., Berven F. S., Søfteland T., Arntzen M. O., D'Santos C. S., De Souza G. A., Wiker H. G.. 2008; Membrane and membrane-associated proteins in Triton X-114 extracts of Mycobacterium bovis BCG identified using a combination of gel-based and gel-free fractionation strategies. Proteomics8:1859–1870
    [Google Scholar]
  22. Menne K. M., Hermjakob H., Apweiler R.. 2000; A comparison of signal sequence prediction methods using a test set of signal peptides. Bioinformatics16:741–742
    [Google Scholar]
  23. Menozzi F. D., Rouse J. H., Alavi M., Laude-Sharp M., Muller J., Bischoff R., Brennan M. J., Locht C.. 1996; Identification of a heparin-binding hemagglutinin present in mycobacteria. J Exp Med184:993–1001
    [Google Scholar]
  24. Muno D., Isobe T., Okuyama T., Ichihara K., Noda Y., Kusunose E., Kusunose M.. 1981; The N-terminal sequences of superoxide dismutases from the 4 mycobacterial species. Biochem Int2:33–42
    [Google Scholar]
  25. Nagai S., Wiker H. G., Harboe M., Kinomoto M.. 1991; Isolation and partial characterization of major protein antigens in the culture fluid of Mycobacterium tuberculosis. Infect Immun59:372–382
    [Google Scholar]
  26. Nielsen H., Krogh A.. 1998; Prediction of signal peptides and signal anchors by a hidden Markov model. Proc Int Conf Intell Syst Mol Biol6:122–130
    [Google Scholar]
  27. Nielsen H., Engelbrecht J., Brunak S., von Heijne G.. 1997a; Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng10:1–6
    [Google Scholar]
  28. Nielsen H., Engelbrecht J., Brunak S., von Heijne G.. 1997b; A neural network method for identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Int J Neural Syst8:581–599
    [Google Scholar]
  29. Olsen I., Reitan L. J., Wiker H. G.. 2000; Distinct differences in repertoires of low-molecular-mass secreted antigens of Mycobacterium avium complex and Mycobacterium tuberculosis. J Clin Microbiol38:4453–4458
    [Google Scholar]
  30. Pugsley A. P.. 1993; The complete general secretory pathway in Gram-negative bacteria. Microbiol Rev57:50–108
    [Google Scholar]
  31. Rosenkrands I., Weldingh K., Jacobsen S., Hansen C. V., Florio W., Gianetri I., Andersen P.. 2000; Mapping and identification of Mycobacterium tuberculosis proteins by two-dimensional gel electrophoresis, microsequencing and immunodetection. Electrophoresis21:935–948
    [Google Scholar]
  32. Saleh M. T., Belisle J. T.. 2000; Secretion of an acid phosphatase (SapM) by Mycobacterium tuberculosis that is similar to eukaryotic acid phosphatases. J Bacteriol182:6850–6853
    [Google Scholar]
  33. Shen H. B., Chou K. C.. 2007; Signal-3L: a 3-layer approach for predicting signal peptides. Biochem Biophys Res Commun363:297–303
    [Google Scholar]
  34. Sonnenberg M. G., Belisle J. T.. 1997; Definition of Mycobacterium tuberculosis culture filtrate proteins by two-dimensional polyacrylamide gel electrophoresis, N-terminal amino acid sequencing, and electrospray mass spectrometry. Infect Immun65:4515–4524
    [Google Scholar]
  35. Sørensen A. L., Nagai S., Houen G., Andersen P., Andersen A. B.. 1995; Purification and characterization of a low-molecular-mass T-cell antigen secreted by Mycobacterium tuberculosis. Infect Immun63:1710–1717
    [Google Scholar]
  36. von Heijne G.. 1986; A new method for predicting signal sequence cleavage sites. Nucleic Acids Res14:4683–4690
    [Google Scholar]
  37. von Heijne G.. 1987; Sequence Analysis in Molecular Biology: Treasure Trove or Trivial Pursuit San Diego; London: Academic Press;
    [Google Scholar]
  38. von Heijne G., Abrahmsen L.. 1989; Species-specific variation in signal peptide design. Implications for protein secretion in foreign hosts. FEBS Lett244:439–446
    [Google Scholar]
  39. WHO 2007; Global Tuberculosis Control: Surveillance, Planning, Financing Geneva: World Health Organization;
    [Google Scholar]
  40. Wiker H. G., Harboe M., Nagai S., Patarroyo M. E., Ramirez C., Cruz N.. 1986; MPB59, a widely cross-reacting protein of Mycobacterium bovis BCG. Int Arch Allergy Appl Immunol81:307–314
    [Google Scholar]
  41. Wiker H. G., Wilson M. A., Schoolnik G. K.. 2000; Extracytoplasmic proteins of Mycobacterium tuberculosis – mature secreted proteins often start with aspartic acid and proline. Microbiology146:1525–1533
    [Google Scholar]
  42. Zhang Z., Henzel W. J.. 2004; Signal peptide prediction based on analysis of experimentally verified cleavage sites. Protein Sci13:2819–2824
    [Google Scholar]
  43. Zuber B., Chami M., Houssin C., Dubochet J., Griffiths G., Daffé M.. 2008; Direct visualization of the outer membrane of native mycobacteria and corynebacteria. J Bacteriol190:5672–5680
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.025270-0
Loading
/content/journal/micro/10.1099/mic.0.025270-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error