1887

Abstract

Glycosylation of bacterial proteins is an important process for bacterial physiology and pathophysiology. Both - and -linked glycan moieties have been identified in bacterial glycoproteins. The -linked glycosylation pathways are well established in Gram-negative bacteria. However, the -linked glycosylation pathways are not well defined due to the complex nature of known -linked glycoproteins in bacteria. In this review, we examine a new family of serine-rich -linked glycoproteins which are represented by fimbriae-associated adhesin Fap1 of and human platelet-binding protein GspB of . This family of glycoproteins is conserved in streptococcal and staphylococcal species. A gene cluster coding for glycosyltransferases and accessory Sec proteins has been implicated in the protein glycosylation. A two-step glycosylation model is proposed. Two glycosyltransferases interact with each other and catalyse the first step of the protein glycosylation in the cytoplasm; the cross-talk between glycosylation-associated proteins and accessory Sec components mediates the second step of the protein glycosylation, an emerging mechanism for bacterial -linked protein glycosylation. Dissecting the molecular mechanism of this conserved biosynthetic pathway offers opportunities to develop new therapeutic strategies targeting this previously unrecognized pathway, as serine-rich glycoproteins have been shown to play a role in bacterial pathogenesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.025221-0
2009-02-01
2019-09-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/2/317.html?itemId=/content/journal/micro/10.1099/mic.0.025221-0&mimeType=html&fmt=ahah

References

  1. Arora, S. K., Bangera, M., Lory, S. & Ramphal, R. ( 2001; ). A genomic island in Pseudomonas aeruginosa carries the determinants of flagellin glycosylation. Proc Natl Acad Sci U S A 98, 9342–9347.[CrossRef]
    [Google Scholar]
  2. Baba, T., Takeuchi, F., Kuroda, M., Yuzawa, H., Aoki, K., Oguchi, A., Nagai, Y., Iwama, N., Asano, K. & other authors ( 2002; ). Genome and virulence determinants of high virulence community-acquired MRSA. Lancet 359, 1819–1827.[CrossRef]
    [Google Scholar]
  3. Banerjee, A., Wang, R., Supernavage, S. L., Ghosh, S. K., Parker, J., Ganesh, N. F., Wang, P. G., Gulati, S. & Rice, P. A. ( 2002; ). Implications of phase variation of a gene (pgtA) encoding a pilin galactosyl transferase in gonococcal pathogenesis. J Exp Med 196, 147–162.[CrossRef]
    [Google Scholar]
  4. Bensing, B. A. & Sullam, P. M. ( 2002; ). An accessory sec locus of Streptococcus gordonii is required for export of the surface protein GspB and for normal levels of binding to human platelets. Mol Microbiol 44, 1081–1094.[CrossRef]
    [Google Scholar]
  5. Bensing, B. A., Gibson, B. W. & Sullam, P. M. ( 2004a; ). The Streptococcus gordonii platelet binding protein GspB undergoes glycosylation independently of export. J Bacteriol 186, 638–645.[CrossRef]
    [Google Scholar]
  6. Bensing, B. A., Lopez, J. A. & Sullam, P. M. ( 2004b; ). The Streptococcus gordonii surface proteins GspB and Hsa mediate binding to sialylated carbohydrate epitopes on the platelet membrane glycoprotein Ibα. Infect Immun 72, 6528–6537.[CrossRef]
    [Google Scholar]
  7. Bensing, B. A., Takamatsu, D. & Sullam, P. M. ( 2005; ). Determinants of the streptococcal surface glycoprotein GspB that facilitate export by the accessory Sec system. Mol Microbiol 58, 1468–1481.[CrossRef]
    [Google Scholar]
  8. Bu, S., Li, Y., Zhou, M., Azadin, P., Zeng, M., Fives-Taylor, P. & Wu, H. ( 2008; ). Interaction between two putative glycosyltransferases is required for glycosylation of a serine-rich streptococcal adhesin. J Bacteriol 190, 1256–1266.[CrossRef]
    [Google Scholar]
  9. Chen, Q., Wu, H. & Fives-Taylor, P. M. ( 2004; ). Investigating the role of secA2 in secretion and glycosylation of a fimbrial adhesin in Streptococcus parasanguis FW213. Mol Microbiol 53, 843–856.[CrossRef]
    [Google Scholar]
  10. Chen, Q., Wu, H., Kumar, R., Peng, Z. & Fives-Taylor, P. M. ( 2006; ). SecA2 is distinct from SecA in immunogenic specificity, subcellular distribution and requirement for membrane anchoring in Streptococcus parasanguis. FEMS Microbiol Lett 264, 174–181.[CrossRef]
    [Google Scholar]
  11. Chen, Q., Sun, B., Wu, H., Peng, Z. & Fives-Taylor, P. M. ( 2007; ). Differential roles of individual domains in selection of secretion route of a Streptococcus parasanguinis serine-rich adhesin, Fap1. J Bacteriol 189, 7610–7617.[CrossRef]
    [Google Scholar]
  12. Drickamer, K. & Taylor, M. E. ( 1998; ). Evolving views of protein glycosylation. Trends Biochem Sci 23, 321–324.[CrossRef]
    [Google Scholar]
  13. Erickson, P. R. & Herzberg, M. C. ( 1993; ). Evidence for the covalent linkage of carbohydrate polymers to a glycoprotein from Streptococcus sanguis. J Biol Chem 268, 23780–23783.
    [Google Scholar]
  14. Fachon-Kalweit, S., Elder, B. L. & Fives-Taylor, P. ( 1985; ). Antibodies that bind to fimbriae block adhesion of Streptococcus sanguis to saliva-coated hydroxyapatite. Infect Immun 48, 617–624.
    [Google Scholar]
  15. Froeliger, E. H. & Fives-Taylor, P. ( 2001; ). Streptococcus parasanguis fimbria-associated adhesin Fap1 is required for biofilm formation. Infect Immun 69, 2512–2519.[CrossRef]
    [Google Scholar]
  16. Glaser, P., Rusniok, C., Buchrieser, C., Chevalier, F., Frangeul, L., Msadek, T., Zouine, M., Couvé, E., Lalioui, L. & other authors ( 2002; ). Genome sequence of Streptococcus agalactiae, a pathogen causing invasive neonatal disease. Mol Microbiol 45, 1499–1513.[CrossRef]
    [Google Scholar]
  17. Hamadeh, R. M., Estabrook, M. M., Zhou, P., Jarvis, G. A. & Griffiss, J. M. ( 1995; ). Anti-Gal binds to pili of Neisseria meningitidis: the immunoglobulin A isotype blocks complement-mediated killing. Infect Immun 63, 4900–4906.
    [Google Scholar]
  18. Handley, P. S., Correia, F. F., Russell, K., Rosan, B. & DiRienzo, J. M. ( 2005; ). Association of a novel high molecular weight, serine-rich protein (SrpA) with fibril-mediated adhesion of the oral biofilm bacterium Streptococcus cristatus. Oral Microbiol Immunol 20, 131–140.[CrossRef]
    [Google Scholar]
  19. Hegge, F. T., Hitchen, P. G., Aas, F. E., Kristiansen, H., Løvold, C., Egge-Jacobsen, W., Panico, M., Leong, W. Y., Bull, V. & other authors ( 2004; ). Unique modifications with phosphocholine and phosphoethanolamine define alternate antigenic forms of Neisseria gonorrhoeae type IV pili. Proc Natl Acad Sci U S A 101, 10798–10803.[CrossRef]
    [Google Scholar]
  20. Hounsell, E. F., Davies, M. J. & Renouf, D. V. ( 1996; ). O-linked protein glycosylation structure and function. Glycoconj J 13, 19–26.[CrossRef]
    [Google Scholar]
  21. Jakubovics, N. S., Kerrigan, S. W., Nobbs, A. H., Stromberg, N., van Dolleweerd, C. J., Cox, D. M., Kelly, C. G. & Jenkinson, H. F. ( 2005; ). Functions of cell surface-anchored antigen I/II family and Hsa polypeptides in interactions of Streptococcus gordonii with host receptors. Infect Immun 73, 6629–6638.[CrossRef]
    [Google Scholar]
  22. Lenz, L. L. & Portnoy, D. A. ( 2002; ). Identification of a second Listeria secA gene associated with protein secretion and the rough phenotype. Mol Microbiol 45, 1043–1056.[CrossRef]
    [Google Scholar]
  23. Levesque, C., Vadeboncoeur, C., Chandad, F. & Frenette, M. ( 2001; ). Streptococcus salivarius fimbriae are composed of a glycoprotein containing a repeated motif assembled into a filamentous nondissociable structure. J Bacteriol 183, 2724–2732.[CrossRef]
    [Google Scholar]
  24. Li, Y., Chen, Y., Huang, X., Zhou, M., Wu, R., Dong, S., Pritchard, D. G., Fives-Taylor, P. & Wu, H. ( 2008; ). A conserved domain of previously unknown function in Gap1 mediates protein–protein interaction and is required for biogenesis of a serine-rich streptococcal adhesin. Mol Microbiol 70, 1094–1104.[CrossRef]
    [Google Scholar]
  25. Moens, S. & Vanderleyden, J. ( 1997; ). Glycoproteins in prokaryotes. Arch Microbiol 168, 169–175.[CrossRef]
    [Google Scholar]
  26. Nobbs, A. H., Zhang, Y., Khammanivong, A. & Herzberg, M. C. ( 2007; ). Streptococcus gordonii Hsa environmentally constrains competitive binding by Streptococcus sanguinis to saliva-coated hydroxyapatite. J Bacteriol 189, 3106–3114.[CrossRef]
    [Google Scholar]
  27. Obert, C., Sublett, J., Kaushal, D., Hinojosa, E., Barton, T., Tuomanen, E. I. & Orihuela, C. J. ( 2006; ). Identification of a candidate Streptococcus pneumoniae core genome and regions of diversity correlated with invasive pneumococcal disease. Infect Immun 74, 4766–4777.[CrossRef]
    [Google Scholar]
  28. Peng, Z., Wu, H., Ruiz, T., Chen, Q., Zhou, M., Sun, B. & Fives-Taylor, P. ( 2008; ). Role of gap3 in Fap1 glycosylation, stability, in vitro adhesion, and fimbrial and biofilm formation of Streptococcus parasanguinis. Oral Microbiol Immunol 23, 70–78.
    [Google Scholar]
  29. Plummer, C., Wu, H., Kerrigan, S. W., Meade, G., Cox, D. & Ian Douglas, C. W. ( 2005; ). A serine-rich glycoprotein of Streptococcus sanguis mediates adhesion to platelets via GPIb. Br J Haematol 129, 101–109.[CrossRef]
    [Google Scholar]
  30. Pombert, C. B., Levesque, C. & Frenette, M. ( 2008; ). Genetic organization of fimbriae's secretion/glycosylation machinery in Streptococcus salivarius. J Dent Res 87, 3422
    [Google Scholar]
  31. Power, P. M., Roddam, L. F., Rutter, K., Fitzpatrick, S. Z., Srikhanta, Y. N. & Jennings, M. P. ( 2003; ). Genetic characterization of pilin glycosylation and phase variation in Neisseria meningitidis. Mol Microbiol 49, 833–847.
    [Google Scholar]
  32. Rigel, N. W. & Braunstein, M. ( 2008; ). A new twist on an old pathway – accessory secretion systems. Mol Microbiol 69, 291–302.[CrossRef]
    [Google Scholar]
  33. Rose, L., Shivshankar, P., Hinojosa, E., Rodriguez, A., Sanchez, C. J. & Orihuela, C. J. ( 2008; ). Antibodies against PsrP, a novel Streptococcus pneumoniae adhesin, block adhesion and protect mice against pneumococcal challenge. J Infect Dis 198, 375–383.[CrossRef]
    [Google Scholar]
  34. Samen, U., Eikmanns, B. J., Reinscheid, D. J. & Borges, F. ( 2007; ). The surface protein Srr-1 of Streptococcus agalactiae binds human keratin 4 and promotes adherence to epithelial HEp-2 cells. Infect Immun 75, 5405–5414.[CrossRef]
    [Google Scholar]
  35. Schmidt, M. A., Riley, L. W. & Benz, I. ( 2003; ). Sweet new world: glycoproteins in bacterial pathogens. Trends Microbiol 11, 554–561.[CrossRef]
    [Google Scholar]
  36. Seifert, K. N., Adderson, E. E., Whiting, A. A., Bohnsack, J. F., Crowley, P. J. & Brady, L. J. ( 2006; ). A unique serine-rich repeat protein (Srr-2) and novel surface antigen (epsilon) associated with a virulent lineage of serotype III Streptococcus agalactiae. Microbiology 152, 1029–1040.[CrossRef]
    [Google Scholar]
  37. Siboo, I. R., Chambers, H. F. & Sullam, P. M. ( 2005; ). Role of SraP, a serine-rich surface protein of Staphylococcus aureus, in binding to human platelets. Infect Immun 73, 2273–2280.[CrossRef]
    [Google Scholar]
  38. Siboo, I. R., Chaffin, D. O., Rubens, C. E. & Sullam, P. M. ( 2008; ). Characterization of the accessory Sec system of Staphylococcus aureus. J Bacteriol 190, 6188–6196.[CrossRef]
    [Google Scholar]
  39. Stephenson, A. E., Wu, H., Novak, J., Tomana, M., Mintz, K. & Fives-Taylor, P. ( 2002; ). The Fap1 fimbrial adhesin is a glycoprotein: antibodies specific for the glycan moiety block the adhesion of Streptococcus parasanguis in an in vitro tooth model. Mol Microbiol 43, 147–157.[CrossRef]
    [Google Scholar]
  40. Szymanski, C. M. & Wren, B. W. ( 2005; ). Protein glycosylation in bacterial mucosal pathogens. Nat Rev Microbiol 3, 225–237.[CrossRef]
    [Google Scholar]
  41. Szymanski, C. M., Logan, S. M., Linton, D. & Wren, B. W. ( 2003; ). Campylobacter – a tale of two protein glycosylation systems. Trends Microbiol 11, 233–238.[CrossRef]
    [Google Scholar]
  42. Takahashi, Y., Konishi, K., Cisar, J. O. & Yoshikawa, M. ( 2002; ). Identification and characterization of hsa, the gene encoding the sialic acid-binding adhesin of Streptococcus gordonii DL1. Infect Immun 70, 1209–1218.[CrossRef]
    [Google Scholar]
  43. Takahashi, Y., Yajima, A., Cisar, J. O. & Konishi, K. ( 2004; ). Functional analysis of the Streptococcus gordonii DL1 sialic acid-binding adhesin and its essential role in bacterial binding to platelets. Infect Immun 72, 3876–3882.[CrossRef]
    [Google Scholar]
  44. Takahashi, Y., Takashima, E., Shimazu, K., Yagishita, H., Aoba, T. & Konishi, K. ( 2006; ). Contribution of sialic acid-binding adhesin to pathogenesis of experimental endocarditis caused by Streptococcus gordonii DL1. Infect Immun 74, 740–743.[CrossRef]
    [Google Scholar]
  45. Takamatsu, D., Bensing, B. A. & Sullam, P. M. ( 2004a; ). Genes in the accessory sec locus of Streptococcus gordonii have three functionally distinct effects on the expression of the platelet-binding protein GspB. Mol Microbiol 52, 189–203.[CrossRef]
    [Google Scholar]
  46. Takamatsu, D., Bensing, B. A. & Sullam, P. M. ( 2004b; ). Four proteins encoded in the gspB-secY2A2 operon of Streptococcus gordonii mediate the intracellular glycosylation of the platelet-binding protein GspB. J Bacteriol 186, 7100–7111.[CrossRef]
    [Google Scholar]
  47. Takamatsu, D., Bensing, B. A., Cheng, H., Jarvis, G. A., Siboo, I. R., Lopez, J. A., Griffiss, J. M. & Sullam, P. M. ( 2005a; ). Binding of the Streptococcus gordonii surface glycoproteins GspB and Hsa to specific carbohydrate structures on platelet membrane glycoprotein Ibalpha. Mol Microbiol 58, 380–392.[CrossRef]
    [Google Scholar]
  48. Takamatsu, D., Bensing, B. A. & Sullam, P. M. ( 2005b; ). Two additional components of the accessory sec system mediating export of the Streptococcus gordonii platelet-binding protein GspB. J Bacteriol 187, 3878–3883.[CrossRef]
    [Google Scholar]
  49. Takamatsu, D., Bensing, B. A., Prakobphol, A., Fisher, S. J. & Sullam, P. M. ( 2006; ). Binding of the streptococcal surface glycoproteins GspB and Hsa to human salivary proteins. Infect Immun 74, 1933–1940.[CrossRef]
    [Google Scholar]
  50. Takeuchi, F., Watanabe, S., Baba, T., Yuzawa, H., Ito, T., Morimoto, Y., Kuroda, M., Cui, L., Takahashi, M. & other authors ( 2005; ). Whole-genome sequencing of Staphylococcus haemolyticus uncovers the extreme plasticity of its genome and the evolution of human-colonizing staphylococcal species. J Bacteriol 187, 7292–7308.[CrossRef]
    [Google Scholar]
  51. Tettelin, H., Nelson, K. E., Paulsen, I. T., Eisen, J. A., Read, T. D., Peterson, S., Heidelberg, J., DeBoy, R. T., Haft, D. H. & other authors ( 2001; ). Complete genome sequence of a virulent isolate of Streptococcus pneumoniae. Science 293, 498–506.[CrossRef]
    [Google Scholar]
  52. Upreti, R. K., Kumar, M. & Shankar, V. ( 2003; ). Bacterial glycoproteins: functions, biosynthesis and applications. Proteomics 3, 363–379.[CrossRef]
    [Google Scholar]
  53. VanderVen, B. C., Harder, J. D., Crick, D. C. & Belisle, J. T. ( 2005; ). Export-mediated assembly of mycobacterial glycoproteins parallels eukaryotic pathways. Science 309, 941–943.
    [Google Scholar]
  54. Vickerman, M. M., Iobst, S., Jesionowski, A. M. & Gill, S. R. ( 2007; ). Genome-wide transcriptional changes in Streptococcus gordonii in response to competence signaling peptide. J Bacteriol 189, 7799–7807.[CrossRef]
    [Google Scholar]
  55. Wacker, M., Linton, D., Hitchen, P. G., Nita-Lazar, M., Haslam, S. M., North, S. J., Panico, M., Morris, H. R., Dell, A. & other authors ( 2002; ). N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. Science 298, 1790–1793.[CrossRef]
    [Google Scholar]
  56. Weerkamp, A. H., Handley, P. S., Baars, A. & Slot, J. W. ( 1986a; ). Negative staining and immunoelectron microscopy of adhesion-deficient mutants of Streptococcus salivarius reveal that the adhesive protein antigens are separate classes of cell surface fibril. J Bacteriol 165, 746–755.
    [Google Scholar]
  57. Weerkamp, A. H., van der Mei, H. C. & Liem, R. S. ( 1986b; ). Structural properties of fibrillar proteins isolated from the cell surface and cytoplasm of Streptococcus salivarius (K+) cells and nonadhesive mutants. J Bacteriol 165, 756–762.
    [Google Scholar]
  58. Wu, H. & Fives-Taylor, P. M. ( 1999; ). Identification of dipeptide repeats and a cell wall sorting signal in the fimbriae-associated adhesin, Fap1, of Streptococcus parasanguis. Mol Microbiol 34, 1070–1081.[CrossRef]
    [Google Scholar]
  59. Wu, H. & Fives-Taylor, P. M. ( 2001; ). Molecular strategies for fimbrial expression and assembly. Crit Rev Oral Biol Med 12, 101–115.[CrossRef]
    [Google Scholar]
  60. Wu, H., Mintz, K. P., Ladha, M. & Fives-Taylor, P. M. ( 1998; ). Isolation and characterization of Fap1, a fimbriae-associated adhesin of Streptococcus parasanguis FW213. Mol Microbiol 28, 487–500.[CrossRef]
    [Google Scholar]
  61. Wu, H., Bu, S., Newell, P., Chen, Q. & Fives-Taylor, P. ( 2007a; ). Two gene determinants are differentially involved in the biogenesis of Fap1 precursors in Streptococcus parasanguis. J Bacteriol 189, 1390–1398.[CrossRef]
    [Google Scholar]
  62. Wu, H., Zeng, M. & Fives-Taylor, P. ( 2007b; ). The glycan moieties and the N-terminal polypeptide backbone of a fimbria-associated adhesin, Fap1, play distinct roles in the biofilm development of Streptococcus parasanguinis. Infect Immun 75, 2181–2188.[CrossRef]
    [Google Scholar]
  63. Xiong, Y. Q., Bensing, B. A., Bayer, A. S., Chambers, H. F. & Sullam, P. M. ( 2008; ). Role of the serine-rich surface glycoprotein GspB of Streptococcus gordonii in the pathogenesis of infective endocarditis. Microb Pathog 45, 297–301.[CrossRef]
    [Google Scholar]
  64. Xu, P., Alves, J. M., Kitten, T., Brown, A., Chen, Z., Ozaki, L. S., Manque, P., Ge, X., Serrano, M. G. & other authors ( 2007; ). Genome of the opportunistic pathogen Streptococcus sanguinis. J Bacteriol 189, 3166–3175.[CrossRef]
    [Google Scholar]
  65. Yajima, A., Urano-Tashiro, Y., Shimazu, K., Takashima, E., Takahashi, Y. & Konishi, K. ( 2008; ). Hsa, an adhesin of Streptococcus gordonii DL1, binds to α2-3-linked sialic acid on glycophorin A of the erythrocyte membrane. Microbiol Immunol 52, 69–77.
    [Google Scholar]
  66. Young Lee, S., Cisar, J. O., Bryant, J. L., Eckhaus, M. A. & Sandberg, A. L. ( 2006; ). Resistance of Streptococcus gordonii to polymorphonuclear leukocyte killing is a potential virulence determinant of infective endocarditis. Infect Immun 74, 3148–3155.[CrossRef]
    [Google Scholar]
  67. Zhang, Y. Q., Ren, S. X., Li, H. L., Wang, Y. X., Fu, G., Yang, J., Qin, Z. Q., Miao, Y. G., Wang, W. Y. & other authors ( 2003; ). Genome-based analysis of virulence genes in a non-biofilm-forming Staphylococcus epidermidis strain (ATCC 12228). Mol Microbiol 49, 1577–1593.[CrossRef]
    [Google Scholar]
  68. Zhou, M., Peng, Z., Fives-Taylor, P. & Wu, H. ( 2008; ). A conserved C-terminal thirteen amino acid motif of Gap1 is required for the Gap1 function and necessary for biogenesis of a serine-rich glycoprotein of Streptococcus parasanguinis. Infect Immun 76, 5624–5631.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.025221-0
Loading
/content/journal/micro/10.1099/mic.0.025221-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error