1887

Abstract

The periodontopathic bacterium forms pigmented colonies when incubated on blood agar plates as a result of accumulation of μ-oxo haem dimer on the cell surface. Gingipain–adhesin complexes are responsible for production of μ-oxo haem dimer from haemoglobin. Non-pigmented mutants (Tn6-5, Tn7-1, Tn7-3 and Tn10-4) were isolated from by Tn transposon mutagenesis [Hoover & Yoshimura (1994), , 43–48]. In this study, we found that the Tn6-5, Tn7-1 and Tn7-3 mutants carried Tn DNA in a gene homologous to the gene encoding UDP-glucose 6-dehydrogenase, a gene encoding a putative group 1 family glycosyltransferase and a gene homologous to the gene encoding ADP heptose-LPS heptosyltransferase, respectively. The Tn10-4 mutant carried Tn DNA at the same position as that for Tn7-1. Gingipain activities associated with cells of the Tn7-3 mutant () were very weak, whereas gingipain activities were detected in the culture supernatants. Immunoblot and mass spectrometry analyses also revealed that gingipains, including their precursor forms, were present in the culture supernatants. A lipopolysaccharide (LPS) fraction of the deletion mutant did not show the ladder pattern that was usually seen for the LPS of the wild-type . A recombinant chimera gingipain was able to bind to an LPS fraction of the wild-type in a dose-dependent manner. These results suggest that the gene product is associated with biosynthesis of LPS and/or cell-surface polysaccharides that can function as an anchorage for gingipain–adhesin complexes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.025163-0
2009-04-01
2020-09-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/4/1282.html?itemId=/content/journal/micro/10.1099/mic.0.025163-0&mimeType=html&fmt=ahah

References

  1. Andrian E., Mostefaoui Y., Rouabhia M., Grenier D.. 2007; Regulation of matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases by Porphyromonas gingivalis in an engineered human oral mucosa model. J Cell Physiol211:56–62
    [Google Scholar]
  2. Bhogal P. S., Slakeski N., Reynolds E. C.. 1997; A cell-associated protein complex of Porphyromonas gingivalis W50 composed of Arg- and Lys-specific cysteine proteinases and adhesins. Microbiology143:2485–2495
    [Google Scholar]
  3. Chen T., Dong H., Yong R., Duncan M. J.. 2000; Pleiotropic pigmentation mutants of Porphyromonas gingivalis . Microb Pathog28:235–247
    [Google Scholar]
  4. Curtis M. A., Thickett A., Slaney J. M., Rangarajan M., Aduse-Opoku J., Shepherd P., Paramonov N., Hounsell E. F.. 1999; Variable carbohydrate modifications to the catalytic chains of the RgpA and RgpB proteases of Porphyromonas gingivalis W50. Infect Immun67:3816–3823
    [Google Scholar]
  5. Darveau R. P., MacIntyre S., Buckley J. T., Hancock R. E.. 1983; Purification and reconstitution in lipid bilayer membranes of an outer membrane, pore-forming protein of Aeromonas salmonicida . J Bacteriol156:1006–1011
    [Google Scholar]
  6. Farquharson S. I., Germaine G. R., Gray G. R.. 2000; Isolation and characterization of the cell-surface polysaccharides of Porphyromonas gingivalis ATCC 53978. Oral Microbiol Immunol15:151–157
    [Google Scholar]
  7. Fujimura Y., Hotokezaka H., Ohara N., Naito M., Sakai E., Yoshimura M., Narita Y., Kitaura H., Yoshida N., Nakayama K.. 2006; The hemoglobin receptor protein of Porphyromonas gingivalis inhibits receptor activator NF- κ B ligand-induced osteoclastogenesis from bone marrow macrophages. Infect Immun74:2544–2551
    [Google Scholar]
  8. Holt S. C., Kesavalu L., Walker S., Genco C. A.. 1999; Virulence factors of Porphyromonas gingivalis . Periodontol 2000;20:168–238
    [Google Scholar]
  9. Hoover C. I., Yoshimura F.. 1994; Transposon-induced pigment-deficient mutants of Porphyromonas gingivalis . FEMS Microbiol Lett124:43–48
    [Google Scholar]
  10. Hoover C. I., Abarbarchuk E., Ng C. Y., Felton J. R.. 1992; Transposition of Tn 4351 in Porphyromonas gingivalis . Plasmid27:246–250
    [Google Scholar]
  11. Imamura T., Pike R. N., Potempa J., Travis J.. 1994; Pathogenesis of periodontitis: a major arginine-specific cysteine proteinase from Porphyromonas gingivalis induces vascular permeability enhancement through activation of the kallikrein/kinin pathway. J Clin Invest94:361–367
    [Google Scholar]
  12. Imamura T., Potempa J., Tanase S., Travis J.. 1997; Activation of blood coagulation factor X by arginine-specific cysteine proteinases (gingipain-Rs) from Porphyromonas gingivalis . J Biol Chem272:16062–16067
    [Google Scholar]
  13. Kadowaki T., Nakayama K., Okamoto K., Abe N., Baba A., Shi Y., Ratnayake D. B., Yamamoto K.. 2000; Porphyromonas gingivalis proteinases as virulence determinants in progression of periodontal diseases. J Biochem128:153–159
    [Google Scholar]
  14. Keating D. H., Willits M. G., Long S. R.. 2002; A Sinorhizobium meliloti lipopolysaccharide mutant altered in cell surface sulfation. J Bacteriol184:6681–6689
    [Google Scholar]
  15. Kikuchi Y., Ohara N., Sato K., Yoshimura M., Yukitake H., Sakai E., Shoji M., Naito M., Nakayama K.. 2005; Novel stationary-phase-upregulated protein of Porphyromonas gingivalis influences production of superoxide dismutase, thiol peroxidase and thioredoxin. Microbiology151:841–853
    [Google Scholar]
  16. Lamont R. J., Jenkinson H. F.. 2000; Subgingival colonization by Porphyromonas gingivalis . Oral Microbiol Immunol15:341–349
    [Google Scholar]
  17. Laus M. C., Logman T. J., Van Brussel A. A., Carlson R. W., Azadi P., Gao M. Y., Kijne J. W.. 2004; Involvement of exo5 in production of surface polysaccharides in Rhizobium leguminosarum and its role in nodulation of Vicia sativa subsp. nigra . J Bacteriol186:6617–6625
    [Google Scholar]
  18. Lin C. S., Lin N. T., Yang B. Y., Weng S. F., Tseng Y. H.. 1995; Nucleotide sequence and expression of UDP-glucose dehydrogenase gene required for the synthesis of xanthan gum in Xanthomonas campestris . Biochem Biophys Res Commun207:223–230
    [Google Scholar]
  19. Lourbakos A., Potempa J., Travis J., D'Andrea M. R., Andrade-Gordon P., Santulli R., Mackie E. J., Pike R. N.. 2001; Arginine-specific protease from Porphyromonas gingivalis activates protease-activated receptors on human oral epithelial cells and induces interleukin-6 secretion. Infect Immun69:5121–5130
    [Google Scholar]
  20. Molhoj M., Verma R., Reiter W. D.. 2004; The biosynthesis of d-galacturonate in plants. Functional cloning and characterization of a membrane-anchored UDP-d-glucuronate 4-epimerase from Arabidopsis . Plant Physiol135:1221–1230
    [Google Scholar]
  21. Naito M., Sakai E., Shi Y., Ideguchi H., Shoji M., Ohara N., Yamamoto K., Nakayama K.. 2006; Porphyromonas gingivalis -induced platelet aggregation in plasma depends on Hgp44 adhesin but not Rgp proteinase. Mol Microbiol59:152–167
    [Google Scholar]
  22. Naito M., Hirakawa H., Yamashita A., Ohara N., Shoji M., Yukitake H., Nakayama K., Toh H., Yoshimura F.. other authors 2008; Determination of the genome sequence of Porphyromonas gingivalis strain ATCC33277 and genomic comparison with strain W83 revealed extensive genome rearrangements in P. gingivalis . DNA Res15:215–225
    [Google Scholar]
  23. Nakayama K., Kadowaki T., Okamoto K., Yamamoto K.. 1995; Construction and characterization of arginine-specific cysteine proteinase (Arg-gingipain)-deficient mutants of Porphyromonas gingivalis . Evidence for significant contribution of Arg-gingipain to virulence. J Biol Chem270:23619–23626
    [Google Scholar]
  24. Nakayama K., Ratnayake D. B., Tsukuba T., Kadowaki T., Yamamoto K., Fujimura S.. 1998; Haemoglobin receptor protein is intragenically encoded by the cysteine proteinase-encoding genes and the haemagglutinin-encoding gene of Porphyromonas gingivalis . Mol Microbiol27:51–61
    [Google Scholar]
  25. Neely A. L., Holford T. R., Löe H., Anerud A., Boysen H.. 2005; The natural history of periodontal disease in humans: risk factors for tooth loss in caries-free subjects receiving no oral health care. J Clin Periodontol32:984–993
    [Google Scholar]
  26. Njoroge T., Genco R. J., Sojar H. T., Hamada N., Genco C. A.. 1997; A role for fimbriae in Porphyromonas gingivalis invasion of oral epithelial cells. Infect Immun65:1980–1984
    [Google Scholar]
  27. Okamoto K., Kadowaki T., Nakayama K., Yamamoto K.. 1996; Cloning and sequencing of the gene encoding a novel lysine-specific cysteine proteinase (Lys-gingipain) in Porphyromonas gingivalis : structural relationship with the arginine-specific cysteine proteinase (Arg-gingipain. J Biochem120:398–406
    [Google Scholar]
  28. Okamoto K., Nakayama K., Kadowaki T., Abe N., Ratnayake D. B., Yamamoto K.. 1998; Involvement of a lysine-specific cysteine proteinase in hemoglobin adsorption and heme accumulation by Porphyromonas gingivalis . J Biol Chem273:21225–21231
    [Google Scholar]
  29. Oliver R. C., Brown L. J., Loe H.. 1998; Periodontal diseases in the United States population. J Periodontol69:269–278
    [Google Scholar]
  30. Potempa J., Pavloff N., Travis J.. 1995; Porphyromonas gingivalis : a proteinase/gene accounting audit. Trends Microbiol3:430–434
    [Google Scholar]
  31. Potempa J., Banbula A., Travis J.. 2000; Role of bacterial proteinases in matrix destruction and modulation of host responses. Periodontol 2000; 24:153–192
    [Google Scholar]
  32. Rangarajan M., Aduse-Opoku J., Slaney J. M., Young K. A., Curtis M. A.. 1997; The prpR1 and prR2 arginine-specific protease genes of Porphyromonas gingivalis W50 produce five biochemically distinct enzymes. Mol Microbiol23:955–965
    [Google Scholar]
  33. Rangarajan M., Aduse-Opoku J., Paramonov N., Hashim A., Bostanci N., Fraser O., Tarelli E., Curtis M.. 2008; Identification of a second lipopolysaccharide in Porphyromonas gingivalis W50. J Bacteriol190:2920–2932
    [Google Scholar]
  34. Saiki K., Konishi K.. 2007; Identification of a Porphyromonas gingivalis novel protein Sov required for the secretion of gingipains. Microbiol Immunol51:483–491
    [Google Scholar]
  35. Sakai E., Naito M., Sato K., Hotokezaka H., Kadowaki T., Kamaguchi A., Yamamoto K., Okamoto K., Nakayama K.. 2007; Construction of recombinant hemagglutinin derived from the gingipain-encoding gene of Porphyromonas gingivalis , identification of its target protein on erythrocytes, and inhibition of hemagglutination by an interdomain regional peptide. J Bacteriol189:3977–3986
    [Google Scholar]
  36. Sato K., Sakai E., Veith P. D., Shoji M., Kikuchi Y., Yukitake H., Ohara N., Naito M., Okamoto K.. other authors 2005; Identification of a new membrane-associated protein that influences transport/maturation of gingipains and adhesins of Porphyromonas gingivalis . J Biol Chem280:8668–8677
    [Google Scholar]
  37. Shi Y., Ratnayake D. B., Okamoto K., Abe N., Yamamoto K., Nakayama K.. 1999; Genetic analyses of proteolysis, hemoglobin binding, and hemagglutination of Porphyromonas gingivalis . Construction of mutants with a combination of rgpA ,rgpB , kgp , and hagA . J Biol Chem274:17955–17960
    [Google Scholar]
  38. Shoji M., Ratnayake D. B., Shi Y., Kadowaki T., Yamamoto K., Yoshimura F., Akamine A., Curtis M. A., Nakayama K.. 2002; Construction and characterization of a nonpigmented mutant of Porphyromonas gingivalis : cell surface polysaccharide as an anchorage for gingipains. Microbiology148:1183–1191
    [Google Scholar]
  39. Shoji M., Naito M., Yukitake H., Sato K., Sakai E., Ohara N., Nakayama K.. 2004; The major structural components of two cell surface filaments of Porphyromonas gingivalis are matured through lipoprotein precursors. Mol Microbiol52:1513–1525
    [Google Scholar]
  40. Slakeski N., Bhogal P. S., O'Brien-Simpson N. M., Reynolds E. C.. 1998; Characterization of a second cell-associated Arg-specific cysteine proteinase of Porphyromonas gingivalis and identification of an adhesin-binding motif involved in association of the prtR and prtK proteinases and adhesins into large complexes. Microbiology144:1583–1592
    [Google Scholar]
  41. Smalley J. W., Birss A. J., Szmigielski B., Potempa J.. 2007; Sequential action of R- and K-specific gingipains of Porphyromonas gingivalis in the generation of the haem-containing pigment from oxyhaemoglobin. Arch Biochem Biophys465:44–49
    [Google Scholar]
  42. Takii R., Kadowaki T., Baba A., Tsukuba T., Yamamoto K.. 2005; A functional virulence complex composed of gingipains, adhesins, and lipopolysaccharide shows high affinity to host cells and matrix proteins and escapes recognition by host immune systems. Infect Immun73:883–893
    [Google Scholar]
  43. Vanterpool E., Roy F., Fletcher H. M.. 2005; Inactivation of vimF , a putative glycosyltransferase gene downstream of vimE , alters glycosylation and activation of the gingipains in Porphyromonas gingivalis W83. Infect Immun73:3971–3982
    [Google Scholar]
  44. Vanterpool E., Roy F., Zhan W., Sheets S. M., Sangberg L., Fletcher H. M.. 2006; VimA is part of the maturation pathway for the major gingipains of Porphyromonas gingivalis W83. Microbiology152:3383–3389
    [Google Scholar]
  45. Wingrove J. A., Discipio R. G., Potempa J., Travis J.. 1992; Activation of complement components C3 and C5 by a cysteine proteinase (gingipain-1) from Porphyromonas gingivalis . J Biol Chem267:18902–18907
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.025163-0
Loading
/content/journal/micro/10.1099/mic.0.025163-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error