1887

Abstract

The periodontopathic bacterium forms pigmented colonies when incubated on blood agar plates as a result of accumulation of μ-oxo haem dimer on the cell surface. Gingipain–adhesin complexes are responsible for production of μ-oxo haem dimer from haemoglobin. Non-pigmented mutants (Tn6-5, Tn7-1, Tn7-3 and Tn10-4) were isolated from by Tn transposon mutagenesis [Hoover & Yoshimura (1994), , 43–48]. In this study, we found that the Tn6-5, Tn7-1 and Tn7-3 mutants carried Tn DNA in a gene homologous to the gene encoding UDP-glucose 6-dehydrogenase, a gene encoding a putative group 1 family glycosyltransferase and a gene homologous to the gene encoding ADP heptose-LPS heptosyltransferase, respectively. The Tn10-4 mutant carried Tn DNA at the same position as that for Tn7-1. Gingipain activities associated with cells of the Tn7-3 mutant () were very weak, whereas gingipain activities were detected in the culture supernatants. Immunoblot and mass spectrometry analyses also revealed that gingipains, including their precursor forms, were present in the culture supernatants. A lipopolysaccharide (LPS) fraction of the deletion mutant did not show the ladder pattern that was usually seen for the LPS of the wild-type . A recombinant chimera gingipain was able to bind to an LPS fraction of the wild-type in a dose-dependent manner. These results suggest that the gene product is associated with biosynthesis of LPS and/or cell-surface polysaccharides that can function as an anchorage for gingipain–adhesin complexes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.025163-0
2009-04-01
2019-11-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/4/1282.html?itemId=/content/journal/micro/10.1099/mic.0.025163-0&mimeType=html&fmt=ahah

References

  1. Andrian, E., Mostefaoui, Y., Rouabhia, M. & Grenier, D. ( 2007; ). Regulation of matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases by Porphyromonas gingivalis in an engineered human oral mucosa model. J Cell Physiol 211, 56–62.[CrossRef]
    [Google Scholar]
  2. Bhogal, P. S., Slakeski, N. & Reynolds, E. C. ( 1997; ). A cell-associated protein complex of Porphyromonas gingivalis W50 composed of Arg- and Lys-specific cysteine proteinases and adhesins. Microbiology 143, 2485–2495.[CrossRef]
    [Google Scholar]
  3. Chen, T., Dong, H., Yong, R. & Duncan, M. J. ( 2000; ). Pleiotropic pigmentation mutants of Porphyromonas gingivalis. Microb Pathog 28, 235–247.[CrossRef]
    [Google Scholar]
  4. Curtis, M. A., Thickett, A., Slaney, J. M., Rangarajan, M., Aduse-Opoku, J., Shepherd, P., Paramonov, N. & Hounsell, E. F. ( 1999; ). Variable carbohydrate modifications to the catalytic chains of the RgpA and RgpB proteases of Porphyromonas gingivalis W50. Infect Immun 67, 3816–3823.
    [Google Scholar]
  5. Darveau, R. P., MacIntyre, S., Buckley, J. T. & Hancock, R. E. ( 1983; ). Purification and reconstitution in lipid bilayer membranes of an outer membrane, pore-forming protein of Aeromonas salmonicida. J Bacteriol 156, 1006–1011.
    [Google Scholar]
  6. Farquharson, S. I., Germaine, G. R. & Gray, G. R. ( 2000; ). Isolation and characterization of the cell-surface polysaccharides of Porphyromonas gingivalis ATCC 53978. Oral Microbiol Immunol 15, 151–157.[CrossRef]
    [Google Scholar]
  7. Fujimura, Y., Hotokezaka, H., Ohara, N., Naito, M., Sakai, E., Yoshimura, M., Narita, Y., Kitaura, H., Yoshida, N. & Nakayama, K. ( 2006; ). The hemoglobin receptor protein of Porphyromonas gingivalis inhibits receptor activator NF-κB ligand-induced osteoclastogenesis from bone marrow macrophages. Infect Immun 74, 2544–2551.[CrossRef]
    [Google Scholar]
  8. Holt, S. C., Kesavalu, L., Walker, S. & Genco, C. A. ( 1999; ). Virulence factors of Porphyromonas gingivalis. Periodontol 2000 20, 168–238.[CrossRef]
    [Google Scholar]
  9. Hoover, C. I. & Yoshimura, F. ( 1994; ). Transposon-induced pigment-deficient mutants of Porphyromonas gingivalis. FEMS Microbiol Lett 124, 43–48.[CrossRef]
    [Google Scholar]
  10. Hoover, C. I., Abarbarchuk, E., Ng, C. Y. & Felton, J. R. ( 1992; ). Transposition of Tn4351 in Porphyromonas gingivalis. Plasmid 27, 246–250.[CrossRef]
    [Google Scholar]
  11. Imamura, T., Pike, R. N., Potempa, J. & Travis, J. ( 1994; ). Pathogenesis of periodontitis: a major arginine-specific cysteine proteinase from Porphyromonas gingivalis induces vascular permeability enhancement through activation of the kallikrein/kinin pathway. J Clin Invest 94, 361–367.[CrossRef]
    [Google Scholar]
  12. Imamura, T., Potempa, J., Tanase, S. & Travis, J. ( 1997; ). Activation of blood coagulation factor X by arginine-specific cysteine proteinases (gingipain-Rs) from Porphyromonas gingivalis. J Biol Chem 272, 16062–16067.[CrossRef]
    [Google Scholar]
  13. Kadowaki, T., Nakayama, K., Okamoto, K., Abe, N., Baba, A., Shi, Y., Ratnayake, D. B. & Yamamoto, K. ( 2000; ). Porphyromonas gingivalis proteinases as virulence determinants in progression of periodontal diseases. J Biochem 128, 153–159.[CrossRef]
    [Google Scholar]
  14. Keating, D. H., Willits, M. G. & Long, S. R. ( 2002; ). A Sinorhizobium meliloti lipopolysaccharide mutant altered in cell surface sulfation. J Bacteriol 184, 6681–6689.[CrossRef]
    [Google Scholar]
  15. Kikuchi, Y., Ohara, N., Sato, K., Yoshimura, M., Yukitake, H., Sakai, E., Shoji, M., Naito, M. & Nakayama, K. ( 2005; ). Novel stationary-phase-upregulated protein of Porphyromonas gingivalis influences production of superoxide dismutase, thiol peroxidase and thioredoxin. Microbiology 151, 841–853.[CrossRef]
    [Google Scholar]
  16. Lamont, R. J. & Jenkinson, H. F. ( 2000; ). Subgingival colonization by Porphyromonas gingivalis. Oral Microbiol Immunol 15, 341–349.[CrossRef]
    [Google Scholar]
  17. Laus, M. C., Logman, T. J., Van Brussel, A. A., Carlson, R. W., Azadi, P., Gao, M. Y. & Kijne, J. W. ( 2004; ). Involvement of exo5 in production of surface polysaccharides in Rhizobium leguminosarum and its role in nodulation of Vicia sativa subsp. nigra. J Bacteriol 186, 6617–6625.[CrossRef]
    [Google Scholar]
  18. Lin, C. S., Lin, N. T., Yang, B. Y., Weng, S. F. & Tseng, Y. H. ( 1995; ). Nucleotide sequence and expression of UDP-glucose dehydrogenase gene required for the synthesis of xanthan gum in Xanthomonas campestris. Biochem Biophys Res Commun 207, 223–230.[CrossRef]
    [Google Scholar]
  19. Lourbakos, A., Potempa, J., Travis, J., D'Andrea, M. R., Andrade-Gordon, P., Santulli, R., Mackie, E. J. & Pike, R. N. ( 2001; ). Arginine-specific protease from Porphyromonas gingivalis activates protease-activated receptors on human oral epithelial cells and induces interleukin-6 secretion. Infect Immun 69, 5121–5130.[CrossRef]
    [Google Scholar]
  20. Molhoj, M., Verma, R. & Reiter, W. D. ( 2004; ). The biosynthesis of d-galacturonate in plants. Functional cloning and characterization of a membrane-anchored UDP-d-glucuronate 4-epimerase from Arabidopsis. Plant Physiol 135, 1221–1230.[CrossRef]
    [Google Scholar]
  21. Naito, M., Sakai, E., Shi, Y., Ideguchi, H., Shoji, M., Ohara, N., Yamamoto, K. & Nakayama, K. ( 2006; ). Porphyromonas gingivalis-induced platelet aggregation in plasma depends on Hgp44 adhesin but not Rgp proteinase. Mol Microbiol 59, 152–167.[CrossRef]
    [Google Scholar]
  22. Naito, M., Hirakawa, H., Yamashita, A., Ohara, N., Shoji, M., Yukitake, H., Nakayama, K., Toh, H., Yoshimura, F. & other authors ( 2008; ). Determination of the genome sequence of Porphyromonas gingivalis strain ATCC33277 and genomic comparison with strain W83 revealed extensive genome rearrangements in P. gingivalis. DNA Res 15, 215–225.[CrossRef]
    [Google Scholar]
  23. Nakayama, K., Kadowaki, T., Okamoto, K. & Yamamoto, K. ( 1995; ). Construction and characterization of arginine-specific cysteine proteinase (Arg-gingipain)-deficient mutants of Porphyromonas gingivalis. Evidence for significant contribution of Arg-gingipain to virulence. J Biol Chem 270, 23619–23626.[CrossRef]
    [Google Scholar]
  24. Nakayama, K., Ratnayake, D. B., Tsukuba, T., Kadowaki, T., Yamamoto, K. & Fujimura, S. ( 1998; ). Haemoglobin receptor protein is intragenically encoded by the cysteine proteinase-encoding genes and the haemagglutinin-encoding gene of Porphyromonas gingivalis. Mol Microbiol 27, 51–61.[CrossRef]
    [Google Scholar]
  25. Neely, A. L., Holford, T. R., Löe, H., Anerud, A. & Boysen, H. ( 2005; ). The natural history of periodontal disease in humans: risk factors for tooth loss in caries-free subjects receiving no oral health care. J Clin Periodontol 32, 984–993.[CrossRef]
    [Google Scholar]
  26. Njoroge, T., Genco, R. J., Sojar, H. T., Hamada, N. & Genco, C. A. ( 1997; ). A role for fimbriae in Porphyromonas gingivalis invasion of oral epithelial cells. Infect Immun 65, 1980–1984.
    [Google Scholar]
  27. Okamoto, K., Kadowaki, T., Nakayama, K. & Yamamoto, K. ( 1996; ). Cloning and sequencing of the gene encoding a novel lysine-specific cysteine proteinase (Lys-gingipain) in Porphyromonas gingivalis: structural relationship with the arginine-specific cysteine proteinase (Arg-gingipain). J Biochem 120, 398–406.[CrossRef]
    [Google Scholar]
  28. Okamoto, K., Nakayama, K., Kadowaki, T., Abe, N., Ratnayake, D. B. & Yamamoto, K. ( 1998; ). Involvement of a lysine-specific cysteine proteinase in hemoglobin adsorption and heme accumulation by Porphyromonas gingivalis. J Biol Chem 273, 21225–21231.[CrossRef]
    [Google Scholar]
  29. Oliver, R. C., Brown, L. J. & Loe, H. ( 1998; ). Periodontal diseases in the United States population. J Periodontol 69, 269–278.[CrossRef]
    [Google Scholar]
  30. Potempa, J., Pavloff, N. & Travis, J. ( 1995; ). Porphyromonas gingivalis: a proteinase/gene accounting audit. Trends Microbiol 3, 430–434.[CrossRef]
    [Google Scholar]
  31. Potempa, J., Banbula, A. & Travis, J. ( 2000; ). Role of bacterial proteinases in matrix destruction and modulation of host responses. Periodontol 2000 24, 153–192.[CrossRef]
    [Google Scholar]
  32. Rangarajan, M., Aduse-Opoku, J., Slaney, J. M., Young, K. A. & Curtis, M. A. ( 1997; ). The prpR1 and prR2 arginine-specific protease genes of Porphyromonas gingivalis W50 produce five biochemically distinct enzymes. Mol Microbiol 23, 955–965.[CrossRef]
    [Google Scholar]
  33. Rangarajan, M., Aduse-Opoku, J., Paramonov, N., Hashim, A., Bostanci, N., Fraser, O., Tarelli, E. & Curtis, M. ( 2008; ). Identification of a second lipopolysaccharide in Porphyromonas gingivalis W50. J Bacteriol 190, 2920–2932.[CrossRef]
    [Google Scholar]
  34. Saiki, K. & Konishi, K. ( 2007; ). Identification of a Porphyromonas gingivalis novel protein Sov required for the secretion of gingipains. Microbiol Immunol 51, 483–491.[CrossRef]
    [Google Scholar]
  35. Sakai, E., Naito, M., Sato, K., Hotokezaka, H., Kadowaki, T., Kamaguchi, A., Yamamoto, K., Okamoto, K. & Nakayama, K. ( 2007; ). Construction of recombinant hemagglutinin derived from the gingipain-encoding gene of Porphyromonas gingivalis, identification of its target protein on erythrocytes, and inhibition of hemagglutination by an interdomain regional peptide. J Bacteriol 189, 3977–3986.[CrossRef]
    [Google Scholar]
  36. Sato, K., Sakai, E., Veith, P. D., Shoji, M., Kikuchi, Y., Yukitake, H., Ohara, N., Naito, M., Okamoto, K. & other authors ( 2005; ). Identification of a new membrane-associated protein that influences transport/maturation of gingipains and adhesins of Porphyromonas gingivalis. J Biol Chem 280, 8668–8677.[CrossRef]
    [Google Scholar]
  37. Shi, Y., Ratnayake, D. B., Okamoto, K., Abe, N., Yamamoto, K. & Nakayama, K. ( 1999; ). Genetic analyses of proteolysis, hemoglobin binding, and hemagglutination of Porphyromonas gingivalis. Construction of mutants with a combination of rgpA, rgpB, kgp, and hagA. J Biol Chem 274, 17955–17960.[CrossRef]
    [Google Scholar]
  38. Shoji, M., Ratnayake, D. B., Shi, Y., Kadowaki, T., Yamamoto, K., Yoshimura, F., Akamine, A., Curtis, M. A. & Nakayama, K. ( 2002; ). Construction and characterization of a nonpigmented mutant of Porphyromonas gingivalis: cell surface polysaccharide as an anchorage for gingipains. Microbiology 148, 1183–1191.
    [Google Scholar]
  39. Shoji, M., Naito, M., Yukitake, H., Sato, K., Sakai, E., Ohara, N. & Nakayama, K. ( 2004; ). The major structural components of two cell surface filaments of Porphyromonas gingivalis are matured through lipoprotein precursors. Mol Microbiol 52, 1513–1525.[CrossRef]
    [Google Scholar]
  40. Slakeski, N., Bhogal, P. S., O'Brien-Simpson, N. M. & Reynolds, E. C. ( 1998; ). Characterization of a second cell-associated Arg-specific cysteine proteinase of Porphyromonas gingivalis and identification of an adhesin-binding motif involved in association of the prtR and prtK proteinases and adhesins into large complexes. Microbiology 144, 1583–1592.[CrossRef]
    [Google Scholar]
  41. Smalley, J. W., Birss, A. J., Szmigielski, B. & Potempa, J. ( 2007; ). Sequential action of R- and K-specific gingipains of Porphyromonas gingivalis in the generation of the haem-containing pigment from oxyhaemoglobin. Arch Biochem Biophys 465, 44–49.[CrossRef]
    [Google Scholar]
  42. Takii, R., Kadowaki, T., Baba, A., Tsukuba, T. & Yamamoto, K. ( 2005; ). A functional virulence complex composed of gingipains, adhesins, and lipopolysaccharide shows high affinity to host cells and matrix proteins and escapes recognition by host immune systems. Infect Immun 73, 883–893.[CrossRef]
    [Google Scholar]
  43. Vanterpool, E., Roy, F. & Fletcher, H. M. ( 2005; ). Inactivation of vimF, a putative glycosyltransferase gene downstream of vimE, alters glycosylation and activation of the gingipains in Porphyromonas gingivalis W83. Infect Immun 73, 3971–3982.[CrossRef]
    [Google Scholar]
  44. Vanterpool, E., Roy, F., Zhan, W., Sheets, S. M., Sangberg, L. & Fletcher, H. M. ( 2006; ). VimA is part of the maturation pathway for the major gingipains of Porphyromonas gingivalis W83. Microbiology 152, 3383–3389.[CrossRef]
    [Google Scholar]
  45. Wingrove, J. A., Discipio, R. G., Potempa, J. & Travis, J. ( 1992; ). Activation of complement components C3 and C5 by a cysteine proteinase (gingipain-1) from Porphyromonas gingivalis. J Biol Chem 267, 18902–18907.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.025163-0
Loading
/content/journal/micro/10.1099/mic.0.025163-0
Loading

Data & Media loading...

Supplements

strains used in this study [ PDF] (52 kb) Oligonucleotides used in this study [ PDF] (14 kb) Authenticity of the insertion mutant (with details of the construction of the mutant) [ PDF] (333 kb)

PDF

strains used in this study [ PDF] (52 kb) Oligonucleotides used in this study [ PDF] (14 kb) Authenticity of the insertion mutant (with details of the construction of the mutant) [ PDF] (333 kb)

PDF

strains used in this study [ PDF] (52 kb) Oligonucleotides used in this study [ PDF] (14 kb) Authenticity of the insertion mutant (with details of the construction of the mutant) [ PDF] (333 kb)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error