1887

Abstract

In the assembly of outer-membrane proteins (OMP) requires the BAM complex and periplasmic chaperones, such as SurA or DegP. Previous work has suggested a potential link between OMP assembly and expression of the genes encoding type-III secretion systems. In order to test this hypothesis, we studied the role of the different lipoproteins of the BAM complex (i.e. BamB, BamC, BamD and BamE), and the periplasmic chaperones SurA and DegP, in these two phenotypes in . Analysis of the corresponding deletion mutants showed that, as previously described with the Δ mutant, BamD, SurA and, to a lesser extent, BamE play a role in outer-membrane biogenesis in Enteritidis, while the membrane was not notably disturbed in Δ and Δ mutants. Interestingly, we found that BamD is not essential in unlike its homologues in and . In contrast, BamD was the only protein required for full expression of T3SS-1 and flagella, as demonstrated by transcriptional analysis of the genes involved in the biosynthesis of these T3SSs. In line with this finding, mutants showed a reduced secretion of effector proteins by these T3SSs, and a reduced ability to invade HT-29 cells. As Δ and Δ mutants had lower levels of OMPs in their outer membrane, but showed no alteration in T3SS-1 and flagella expression, these results demonstrate the absence of a systematic link between an OMP assembly defect and the downregulation of T3SSs in ; therefore, this link appears to be related to a more specific mechanism that involves at least BamB and BamD.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.025155-0
2009-05-01
2019-12-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/5/1613.html?itemId=/content/journal/micro/10.1099/mic.0.025155-0&mimeType=html&fmt=ahah

References

  1. Abrahams, G. L. & Hensel, M. ( 2006; ). Manipulating cellular transport and immune responses: dynamic interactions between intracellular Salmonella enterica and its host cells. Cell Microbiol 8, 728–737.[CrossRef]
    [Google Scholar]
  2. Allen-Vercoe, E., Dibb-Fuller, M., Thorns, C. J. & Woodward, M. J. ( 1997; ). SEF17 fimbriae are essential for the convoluted colonial morphology of Salmonella enteritidis. FEMS Microbiol Lett 153, 33–42.[CrossRef]
    [Google Scholar]
  3. Amy, M., Velge, P., Senocq, D., Bottreau, E., Mompart, F. & Virlogeux-Payant, I. ( 2004; ). Identification of a new Salmonella enterica serovar Enteritidis locus involved in cell invasion and in the colonisation of chicks. Res Microbiol 155, 543–552.[CrossRef]
    [Google Scholar]
  4. Arricau, N., Hermant, D., Waxin, H., Ecobichon, C., Duffey, P. S. & Popoff, M. Y. ( 1998; ). The RcsB–RcsC regulatory system of Salmonella typhi differentially modulates the expression of invasion proteins, flagellin and Vi antigen in response to osmolarity. Mol Microbiol 29, 835–850.[CrossRef]
    [Google Scholar]
  5. Carlsson, K. E., Liu, J., Edqvist, P. J. & Francis, M. S. ( 2007; ). Extracytoplasmic-stress-responsive pathways modulate type III secretion in Yersinia pseudotuberculosis. Infect Immun 75, 3913–3924.[CrossRef]
    [Google Scholar]
  6. Chang, A. C. & Cohen, S. N. ( 1978; ). Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J Bacteriol 134, 1141–1156.
    [Google Scholar]
  7. Charlson, E. S., Werner, J. N. & Misra, R. ( 2006; ). Differential effects of yfgL mutation on Escherichia coli outer membrane proteins and lipopolysaccharide. J Bacteriol 188, 7186–7194.[CrossRef]
    [Google Scholar]
  8. Cherepanov, P. P. & Wackernagel, W. ( 1995; ). Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 158, 9–14.[CrossRef]
    [Google Scholar]
  9. Datsenko, K. A. & Wanner, B. L. ( 2000; ). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97, 6640–6645.[CrossRef]
    [Google Scholar]
  10. Fardini, Y., Chettab, K., Grépinet, O., Rochereau, S., Trotereau, J., Harvey, P., Amy, M., Bottreau, E., Bumstead, N. & other authors ( 2007; ). The YfgL lipoprotein is essential for type III secretion system expression and virulence of Salmonella enterica serovar Enteritidis. Infect Immun 75, 358–370.[CrossRef]
    [Google Scholar]
  11. Figueroa-Bossi, N., Ammendola, S. & Bossi, L. ( 2006; ). Differences in gene expression levels and in enzymatic qualities account for the uneven contribution of superoxide dismutases SodCI and SodCII to pathogenicity in Salmonella enterica. Microbes Infect 8, 1569–1578.[CrossRef]
    [Google Scholar]
  12. Fogh, J. & Trempe, G. ( 1975; ). New human cell line. In Human Tumor Cell In Vitro, pp. 115–141. Edited by J. Fogh. New York: Plenum.
  13. Fussenegger, M., Facius, D., Meier, J. & Meyer, T. F. ( 1996; ). A novel peptidoglycan-linked lipoprotein (ComL) that functions in natural transformation competence of Neisseria gonorrhoeae. Mol Microbiol 19, 1095–1105.[CrossRef]
    [Google Scholar]
  14. Glatron, M. F. & Rapoport, G. ( 1972; ). Biosynthesis of the parasporal inclusion of Bacillus thuringiensis: half-life of its corresponding messenger RNA. Biochimie 54, 1291–1301.[CrossRef]
    [Google Scholar]
  15. Humphreys, S., Stevenson, A., Bacon, A., Weinhardt, A. B. & Roberts, M. ( 1999; ). The alternative sigma factor, sigmaE, is critically important for the virulence of Salmonella typhimurium. Infect Immun 67, 1560–1568.
    [Google Scholar]
  16. Humphreys, S., Rowley, G., Stevenson, A., Kenyon, W. J., Spector, M. P. & Roberts, M. ( 2003; ). Role of periplasmic peptidylprolyl isomerases in Salmonella enterica serovar Typhimurium virulence. Infect Immun 71, 5386–5388.[CrossRef]
    [Google Scholar]
  17. Khairnar, N. P., Kamble, V. A., Mangoli, S. H., Apte, S. K. & Misra, H. S. ( 2007; ). Involvement of a periplasmic protein kinase in DNA strand break repair and homologous recombination in Escherichia coli. Mol Microbiol 65, 294–304.[CrossRef]
    [Google Scholar]
  18. Lewis, C., Skovierova, H., Rowley, G., Rezuchova, B., Homerova, D., Stevenson, A., Sherry, A., Kormanec, J. & Roberts, M. ( 2008; ). Small outer-membrane lipoprotein, SmpA, is regulated by σ E and has a role in cell envelope integrity and virulence of Salmonella enterica serovar Typhimurium. Microbiology 154, 979–988.[CrossRef]
    [Google Scholar]
  19. Macnab, R. M. ( 2004; ). Type III flagellar protein export and flagellar assembly. Biochim Biophys Acta 1694, 207–217.[CrossRef]
    [Google Scholar]
  20. Malinverni, J. C., Werner, J., Kim, S., Sklar, J. G., Kahne, D., Misra, R. & Silhavy, T. J. ( 2006; ). YfiO stabilizes the YaeT complex and is essential for outer membrane protein assembly in Escherichia coli. Mol Microbiol 61, 151–164.[CrossRef]
    [Google Scholar]
  21. McIngvale, S. C., Elhanafi, D. & Drake, M. A. ( 2002; ). Optimization of reverse transcriptase PCR to detect viable shiga-toxin-producing Escherichia coli. Appl Environ Microbiol 68, 799–806.[CrossRef]
    [Google Scholar]
  22. Neuhoff, V., Arold, N., Taube, D. & Ehrhardt, W. ( 1988; ). Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis 9, 255–262.[CrossRef]
    [Google Scholar]
  23. Onufryk, C., Crouch, M. L., Fang, F. C. & Gross, C. A. ( 2005; ). Characterization of six lipoproteins in the σ E regulon. J Bacteriol 187, 4552–4561.[CrossRef]
    [Google Scholar]
  24. Roche, S. M., Gracieux, P., Albert, I., Gouali, M., Jacquet, C., Martin, P. M. & Velge, P. ( 2003; ). Experimental validation of low virulence in field strains of Listeria monocytogenes. Infect Immun 71, 3429–3436.[CrossRef]
    [Google Scholar]
  25. Rolhion, N., Barnich, N., Claret, L. & Darfeuille-Michaud, A. ( 2005; ). Strong decrease in invasive ability and outer membrane vesicle release in Crohn's disease-associated adherent-invasive Escherichia coli strain LF82 with the yfgL gene deleted. J Bacteriol 187, 2286–2296.[CrossRef]
    [Google Scholar]
  26. Rouviere, P. E. & Gross, C. A. ( 1996; ). SurA, a periplasmic protein with peptidyl-prolyl isomerase activity, participates in the assembly of outer membrane porins. Genes Dev 10, 3170–3182.[CrossRef]
    [Google Scholar]
  27. Ruiz, N., Falcone, B., Kahne, D. & Silhavy, T. J. ( 2005; ). Chemical conditionality: a genetic strategy to probe organelle assembly. Cell 121, 307–317.[CrossRef]
    [Google Scholar]
  28. Schlumberger, M. C. & Hardt, W. D. ( 2005; ). Triggered phagocytosis by Salmonella: bacterial molecular mimicry of RhoGTPase activation/deactivation. Curr Top Microbiol Immunol 291, 29–42.
    [Google Scholar]
  29. Sklar, J. G., Wu, T., Gronenberg, L. S., Malinverni, J. C., Kahne, D. & Silhavy, T. J. ( 2007a; ). Lipoprotein SmpA is a component of the YaeT complex that assembles outer membrane proteins in Escherichia coli. Proc Natl Acad Sci U S A 104, 6400–6405.[CrossRef]
    [Google Scholar]
  30. Sklar, J. G., Wu, T., Kahne, D. & Silhavy, T. J. ( 2007b; ). Defining the roles of the periplasmic chaperones SurA, Skp, and DegP in Escherichia coli. Genes Dev 21, 2473–2484.[CrossRef]
    [Google Scholar]
  31. Sydenham, M., Douce, G., Bowe, F., Ahmed, S., Chatfield, S. & Dougan, G. ( 2000; ). Salmonella enterica serovar Typhimurium surA mutants are attenuated and effective live oral vaccines. Infect Immun 68, 1109–1115.[CrossRef]
    [Google Scholar]
  32. Ureta, A. R., Endres, R. G., Wingreen, N. S. & Silhavy, T. J. ( 2007; ). Kinetic analysis of the assembly of the outer membrane protein LamB in Escherichia coli mutants each lacking a secretion or targeting factor in a different cellular compartment. J Bacteriol 189, 446–454.[CrossRef]
    [Google Scholar]
  33. van Asten, F. J., Hendriks, H. G., Koninkx, J. F. & van Dijk, J. E. ( 2004; ). Flagella-mediated bacterial motility accelerates but is not required for Salmonella serotype Enteritidis invasion of differentiated Caco-2 cells. Int J Med Microbiol 294, 395–399.[CrossRef]
    [Google Scholar]
  34. Voulhoux, R., Bos, M. P., Geurtsen, J., Mols, M. & Tommassen, J. ( 2003; ). Role of a highly conserved bacterial protein in outer membrane protein assembly. Science 299, 262–265.[CrossRef]
    [Google Scholar]
  35. Wu, T., Malinverni, J., Ruiz, N., Kim, S., Silhavy, T. J. & Kahne, D. ( 2005; ). Identification of a multicomponent complex required for outer membrane biogenesis in Escherichia coli. Cell 121, 235–245.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.025155-0
Loading
/content/journal/micro/10.1099/mic.0.025155-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error