1887

Abstract

Isolates of ‘’ were recovered after ice-affinity selection of summer-collected soils. ‘’ DL7 was further characterized and shown to have ice nucleation activity (INA), a property that allows the crystallization of ice at temperatures close to the melting point, effectively preventing the supercooling of water. INA was optimally detected after culturing at temperatures consistent with psychrophilic growth. The sequence encoding the ‘’ ice nucleation protein (INP) was obtained using both PCR and chromosome walking. When expressed in the resulting recombinants had INA. The ‘’ sequence, dubbed , is clearly related to previously cloned INP genes, but it shows greater divergence. Sequence analysis suggests that there are two opposite flat surfaces, one relatively hydrophobic that likely serves as an ice template, and the other that could function as a complementary face to facilitate interprotein interaction for ice-step formation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.025114-0
2009-04-01
2020-04-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/4/1164.html?itemId=/content/journal/micro/10.1099/mic.0.025114-0&mimeType=html&fmt=ahah

References

  1. Abe K., Watabe S., Emori Y., Watanabe M., Arai S.. 1989; An ice nucleation active gene of Erwinia ananas . Sequence similarity to those of Pseudomonas species and regions required for ice nucleation activity. FEBS Lett258:297–300
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402
    [Google Scholar]
  3. Borchardt H. J., Daniels F.. 1957; The application of differential thermal analysis to the study of reaction kinetics. J Am Chem Soc79:41–46
    [Google Scholar]
  4. Cavicchioli R.. 2002; Extremophiles and the search for extraterrestrial life. Astrobiology2:281–292
    [Google Scholar]
  5. Deininger C. A., Mueller G. M., Wolber P. K.. 1988; Immunological characterization of ice nucleation proteins from Pseudomonas syringae , Pseudomonas fluorescens and Erwinia herbicola . J Bacteriol170:669–675
    [Google Scholar]
  6. Edwards A. R., Van den Bussche R. A., Wichman H. A., Orser C. S.. 1994; Unusual pattern of bacterial ice nucleation gene evolution. Mol Biol Evol11:911–920
    [Google Scholar]
  7. Felsenstein J.. 2004; phylip (phylogeny inference package) version 3.6. Department of Genome Sciences University of Washington; Seattle:
    [Google Scholar]
  8. Graether S. P., Jia Z.. 2001; Modeling Pseudomonas syringae ice-nucleation protein as a beta-helical protein. Biophys J80:1169–1173
    [Google Scholar]
  9. Graham L. A., Liou Y. C., Walker V. K., Davies P. L.. 1997; Hyperactive antifreeze protein from beetles. Nature388:727–728
    [Google Scholar]
  10. Kajava A. V., Lindow S. E.. 1993; A model of three-dimensional structure of ice nucleation proteins. J Mol Biol232:709–717
    [Google Scholar]
  11. Kobashigawa Y., Nishimiya Y., Miura K., Ohgiya S., Tsuda S.. 2005; A part of ice nucleation protein exhibits the ice-binding ability. FEBS Lett579:1493–1497
    [Google Scholar]
  12. Kozloff L. M., Schofield M. A., Lute M.. 1983; Ice nucleating activity of Pseudomonas syringae and Erwinia herbicola . J Bacteriol153:222–231
    [Google Scholar]
  13. Kuiper M. J., Davies P. L., Walker V. K.. 2001; A theoretical model of a plant antifreeze protein from Lolium perenne . Biophys J81:3560–3565
    [Google Scholar]
  14. Kumar G. S., Jagannadham M. V., Ray M. K.. 2002; Low-temperature-induced changes in composition and fluidity of lipopolysaccharides in the antarctic psychrotrophic bacterium Pseudomonas syringae . J Bacteriol184:6746–6749
    [Google Scholar]
  15. Lindow S. E., Arny D. C., Upper C. D.. 1978; Distribution of ice nucleation-active bacteria on plants in nature. Appl Environ Microbiol36:831–838
    [Google Scholar]
  16. Maki L. R., Galyan E. L., Chang-Chien M. M., Caldwell D. R.. 1974; Ice nucleation induced by Pseudomonas syringae . Appl Microbiol28:456–459
    [Google Scholar]
  17. Nemecek-Marshall M., Laduca R., Fall R.. 1993; High-level expression of ice nuclei in a Pseudomonas syringae strain is induced by nutrient limitation and low temperature. J Bacteriol175:4062–4070
    [Google Scholar]
  18. Phelps P., Giddings T. H., Prochoda M., Fall R.. 1986; Release of cell-free ice nuclei by Erwinia herbicola . J Bacteriol167:496–502
    [Google Scholar]
  19. Pruppacher H. R., Klett J. D.. 1997; Microphysics of Clouds and Precipitation , 2nd edn. New York: Springer;
  20. Raaijmakers J. M., Vlami M., de Souza J. T.. 2002; Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwenhoek81:537–547
    [Google Scholar]
  21. Schuster-Böckler B., Schultz J., Rahmann S.. 2004; HMM logos for visualization of protein families. BMC Bioinformatics5: 7
    [Google Scholar]
  22. Shivaji S., Rao N. S., Saisree L., Sheth V., Reddy G. S., Bhargava P. M.. 1989; Isolation and identification of Pseudomonas spp. from Schirmacher Oasis, Antarctica. Appl Environ Microbiol55:767–770
    [Google Scholar]
  23. Stallwood B., Shears J., Williams P. A., Hughes K. A.. 2005; Low temperature bioremediation of oil-contaminated soil using biostimulation and bioaugmentation with a Pseudomonas sp. from maritime Antarctica. J Appl Microbiol99:794–802
    [Google Scholar]
  24. Tyshenko M. G., Doucet D., Davies P. L., Walker V. K.. 1997; The antifreeze potential of the spruce budworm thermal hysteresis protein. Nat Biotechnol15:887–890
    [Google Scholar]
  25. Vali G.. 1971; Quantitative evaluation of experimental results on the heterogenerous freezing nucleation of supercooled liquid. J Atmos Sci28:402–409
    [Google Scholar]
  26. Vali G.. 1995; Principles of Ice Nucleation: Biological Ice Nucleation and its Applications London: APS Press;
  27. Villeret V., Chessa J. P., Gerday C., Van Beeumen J.. 1997; Preliminary crystal structure determination of the alkaline protease from the Antarctic psychrophile Pseudomonas aeruginosa . Protein Sci6:2462–2464
    [Google Scholar]
  28. Walker V. K., Palmer G. R., Voordouw G.. 2006; Freeze-thaw tolerance and clues to the winter survival of a soil community. Appl Environ Microbiol72:1784–1792
    [Google Scholar]
  29. Walker V. K., Wilson S. L., Wu Z., Miao D. N., Zeng H., Ripmeester J. A., Palmer G. R.. 2008; Screening microbes for ice-associating proteins with potential application as ‘green inhibitors’ for gas hydrates. In Emerging Environmental Technologies pp29–41 Edited by Shah V. New York: Springer;
  30. Warren G., Corotto L.. 1989; The consensus sequence of ice nucleation proteins from Erwinia herbicola , Pseudomonas fluorescens and Pseudomonas syringae . Gene85:239–242
    [Google Scholar]
  31. Wilson S. L., Kelley D. L., Walker V. K.. 2006; Ice-active characteristics of soil bacteria selected by ice-affinity. Environ Microbiol8:1816–1824
    [Google Scholar]
  32. Wolber P., Warren G.. 1989; Bacterial ice-nucleation proteins. Trends Biochem Sci14:179–182
    [Google Scholar]
  33. Wolber P. K., Deininger C. A., Southworth M. W., Vandekerckhove J., van Montagu M., Warren G. J.. 1986; Identification and purification of a bacterial ice-nucleation protein. Proc Natl Acad Sci U S A83:7256–7260
    [Google Scholar]
  34. Wynn-Williams D. D.. 1983; Distribution and characteristics of Chromobacterium in the maritime and sub-antarctic. Polar Biol2:101–108
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.025114-0
Loading
/content/journal/micro/10.1099/mic.0.025114-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error