1887

Abstract

The lipopolysaccharide (LPS) of the Gram-negative legume symbiont biovar 3841 contains several unique modifications, including the addition of a 27-hydroxyoctacosanoic acid (27OHC28 : 0), also termed the very long chain fatty acid (VLCFA), attached at the 2′ position of lipid A. A transposon mutant that lacks expression of two putative 3-oxo-acyl [acyl-carrier protein] synthase II genes, and , from the VLCFA biosynthetic cluster, was isolated and characterized. MS indicated that the lipid A of the mutant lacked the VLCFA modification, and sodium deoxycholate (DOC)-PAGE of the LPS indicated further structural alterations. The mutant was characteristically sensitive to several stresses that would be experienced in the soil environment, such as desiccation and osmotic stresses. An increase in the excretion of neutral surface polysaccharide was observed in the mutant. This mutant was also altered in its attachment to solid surfaces, and was non-motile, with most of the mutant cells lacking flagella. Despite the pleiotropic effects of the mutation, these mutants were still able to nodulate legumes and fix atmospheric nitrogen. This report emphasizes that a structurally intact VLCFA-containing lipid A is critical to cellular traits that are important for survival in the rhizosphere.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.025031-0
2009-09-01
2020-07-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/9/3055.html?itemId=/content/journal/micro/10.1099/mic.0.025031-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J. H., Zhang Z., Miller W., Lipman D. J.. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402
    [Google Scholar]
  2. Basu S. S., Karbarz M. J., Raetz C. R. H.. 2002; Expression cloning and characterization of the C28 acyltransferase of lipid A biosynthesis in Rhizobium leguminosarum. J Biol Chem277:28959–28971
    [Google Scholar]
  3. Beringer J. E.. 1974; R factor transfer in Rhizobium leguminosarum. J Gen Microbiol84:188–198
    [Google Scholar]
  4. Bhat U. R., Mayer H., Yokota A., Hollingsworth R. I., Carlson R. W.. 1991; Occurrence of lipid A variants with 27-hydroxyoctacosanoic acid in lipopolysaccharides from members of the family Rhizobiaceae. J Bacteriol173:2155–2159
    [Google Scholar]
  5. Bhat U. R., Forsberg L. S., Carlson R. W.. 1994; Structure of lipid A component of Rhizobium leguminosarum bv phaseoli lipopolysaccharide – unique nonphosphorylated lipid A containing 2-amino-8-deoxygluconate, galacturonate, and glucosamine. J Biol Chem269:14402–14410
    [Google Scholar]
  6. Breedveld M. W., Miller K. J.. 1994; Cyclic β-glucans of members of the family Rhizobiaceae. Microbiol Rev58:145–161
    [Google Scholar]
  7. Bringhurst R. M., Cardon Z. G., Gage D. J.. 2001; Galactosides in the rhizosphere: utilization by Sinorhizobium meliloti and development of a biosensor. Proc Natl Acad Sci U S A98:4540–4545
    [Google Scholar]
  8. Carlson R. W.. 1984; Heterogeneity of Rhizobium lipopolysaccharides. J Bacteriol158:1012–1017
    [Google Scholar]
  9. Ceri H., Olson M. E., Stremick C. A., Read R. R., Morck D., Buret A.. 1999; The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol37:1771–1776
    [Google Scholar]
  10. Colonna-Romano S., Arnold W., Schluter A., Boistard P., Puhler A., Priefer U. B.. 1990; An Fnr-like protein encoded in Rhizobium leguminosarum biovar viciae shows structural and functional homology to Rhizobium meliloti FixK. Mol Gen Genet223:138–147
    [Google Scholar]
  11. Cytryn E. J., Sangurdekar D. P., Streeter J. G., Franck W. L., Chang W. S., Stacey G., Emerich D. W., Joshi T., Xu D., Sadowsky M. J.. 2007; Transcriptional and physiological responses of Bradyrhizobium japonicum to desiccation-induced stress. J Bacteriol189:6751–6762
    [Google Scholar]
  12. Dylan T., Helinski D. R., Ditta G. S.. 1990; Hypoosmotic adaptation in Rhizobium meliloti requires β-(1→2)-glucan. J Bacteriol172:1400–1408
    [Google Scholar]
  13. Ferguson G. P., Datta A., Carlson R. W., Walker G. C.. 2005; Importance of unusually modified lipid A in Sinorhizobium stress resistance and legume symbiosis. Mol Microbiol56:68–80
    [Google Scholar]
  14. Garcia-de los Santos A., Brom S.. 1997; Characterization of two plasmid-borne lpsβ loci of Rhizobium etli required for lipopolysaccharide synthesis and for optimal interaction with plants. Mol Plant Microbe Interact10:891–902
    [Google Scholar]
  15. Gardy J. L., Laird M. R., Chen F., Rey S., Walsh C. J., Ester M., Brinkman F. S. L.. 2005; PSORTb v.2.0: expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysis. Bioinformatics21:617–623
    [Google Scholar]
  16. Garmiri P., Coles K., Humphrey T., Cogan T.. 2008; Role of outer membrane lipopolysaccharides in the protection of Salmonella enterica serovar Typhimurium from desiccation damage. FEMS Microbiol Lett281:155–159
    [Google Scholar]
  17. Gilbert K. B., Vanderlinde E. M., Yost C. K.. 2007; Mutagenesis of the carboxy terminal protease CtpA decreases desiccation tolerance in Rhizobium leguminosarum. FEMS Microbiol Lett272:65–74
    [Google Scholar]
  18. González-Ballester D., de Montaigu A., Galvan A., Fernandez E.. 2005; Restriction enzyme site-directed amplification PCR: a tool to identify regions flanking a marker DNA. Anal Biochem340:330–335
    [Google Scholar]
  19. Harrison J. J., Ceri H., Yerly J., Stremick C. A., Hu Y., Martinuzzi R., Turner R. J.. 2006; The use of microscopy and three-dimensional visualization to evaluate the structure of microbial biofilms cultivated in the Calgary Biofilm Device. Biol Proced Online8:194–215
    [Google Scholar]
  20. Harrison J. J., Ceri H., Yerly J., Rabiei M., Hu Y., Martinuzzi R., Turner R. J.. 2007; Metal ions may suppress or enhance cellular differentiation in Candida albicans and Candida tropicalis biofilms. Appl Environ Microbiol73:4940–4949
    [Google Scholar]
  21. Heath R. J., White S. W., Rock C. O.. 2001; Lipid biosynthesis as a target for antibacterial agents. Prog Lipid Res40:467–497
    [Google Scholar]
  22. Hitchcock P. J., Brown T. M.. 1983; Morphological heterogeneity among Salmonella lipopolysaccharide chemotypes in silver-stained polyacrylamide gels. J Bacteriol154:269–277
    [Google Scholar]
  23. Huang W. J., Jia J., Edwards P., Dehesh K., Schneider G., Lindqvist Y.. 1998; Crystal structure of β-ketoacyl-acyl carrier protein synthase II from E. coli reveals the molecular architecture of condensing enzymes. EMBO J17:1183–1191
    [Google Scholar]
  24. Hynes M. F., McGregor N. F.. 1990; Two plasmids other than the nodulation plasmid are necessary for formation of nitrogen-fixing nodules by Rhizobium leguminosarum. Mol Microbiol4:567–574
    [Google Scholar]
  25. Johnston A. W. B., Beringer J. E.. 1975; Identification of Rhizobium strains in pea root nodules using genetic markers. J Gen Microbiol87:343–350
    [Google Scholar]
  26. Kannenberg E. L., Reuhs B. L., Forsberg S. L., Carlson R. W.. 1998; Lipopolysaccharides and K-antigens: their structures, biosynthesis, and function. In The Rhizobiaceae: Molecular Biology of Model Plant-Associated Bacteria pp119–154 Edited by Spaink H. P., Kondorosi A., Hooykaas P. J. J. Dordrecht, The Netherlands: Kluwer Academic Publishers;
    [Google Scholar]
  27. Laemmli U. K.. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227:680
    [Google Scholar]
  28. Laurentin A., Edwards C.. 2003; A microtiter modification of the anthrone–sulfuric acid colorimetric assay for glucose-based carbohydrates. Anal Biochem315:143–145
    [Google Scholar]
  29. Laus M. C., Logman T. J., Lamers G. E., Van Brussel A. N., Carlson R. W., Kijne J. W.. 2006; A novel polar surface polysaccharide from Rhizobium leguminosarum binds host plant lectin. Mol Microbiol59:1704–1713
    [Google Scholar]
  30. Lever M.. 1972; A new reaction for colorimetric determination of carbohydrates. Anal Biochem47:273–279
    [Google Scholar]
  31. Lloret J., Bolanos L., Lucas M. M., Peart J. M., Brewin N. J., Bonilla I., Rivilla R.. 1995; Ionic stress and osmotic pressure induce different alterations in the lipopolysaccharide of a Rhizobium meliloti strain. Appl Environ Microbiol61:3701–3704
    [Google Scholar]
  32. Manzon R. G., Neuls T. M., Manzon L. A.. 2007; Molecular cloning, tissue distribution, and developmental expression of lamprey transthyretins. Gen Comp Endocrinol151:55–65
    [Google Scholar]
  33. Miller J. H.. 1972; Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  34. Ngwai Y. B., Adachi Y., Ogawa Y., Hara H.. 2006; Characterization of biofilm-forming abilities of antibiotic-resistant Salmonella typhimurium DT104 on hydrophobic abiotic surfaces. J Microbiol Immunol Infect39:278–291
    [Google Scholar]
  35. Nikaido H., Vaara M.. 1985; Molecular basis of bacterial outer membrane permeability. Microbiol Rev49:1–32
    [Google Scholar]
  36. Ophir T., Gutnick D.. 1994; A role for exopolysaccharides in the protection of microorganisms from desiccation. Appl Environ Microbiol60:740–745
    [Google Scholar]
  37. Priefer U. B.. 1989; Genes involved in lipopolysaccharide production and symbiosis are clustered on the chromosome of Rhizobium leguminosarum biovar viciae VF39. J Bacteriol171:6161–6168
    [Google Scholar]
  38. Quandt J., Hynes M. F.. 1993; Versatile suicide vectors which allow direct selection for gene replacement in Gram-negative bacteria. Gene127:15–21
    [Google Scholar]
  39. Que N. L. S., Ribeiro A. A., Raetz C. R. H.. 2000a; Two-dimensional NMR spectroscopy and structures of six lipid A species from Rhizobium etli CE3 – detection of an acyloxyacyl residue in each component and origin of the aminogluconate moiety. J Biol Chem275:28017–28027
    [Google Scholar]
  40. Que N. L. S., Lin S. H., Cotter R. J., Raetz C. R. H.. 2000b; Purification and mass spectrometry of six lipid A species from the bacterial endosymbiont Rhizobium etli – demonstration of a conserved distal unit and a variable proximal portion. J Biol Chem275:28006–28016
    [Google Scholar]
  41. Reeve W. G., Tiwari R. P., Worsley P. S., Dilworth M. J., Glenn A. R., Howieson J. G.. 1999; Constructs for insertional mutagenesis, transcriptional signal localization and gene regulation studies in root nodule and other bacteria. Microbiology145:1307–1316
    [Google Scholar]
  42. Reuhs B. L., Carlson R. W., Kim J. S.. 1993; Rhizobium fredii and Rhizobium meliloti produce 3-deoxy-d-manno-2-octulosonic acid-containing polysaccharides that are structurally analogous to group II K antigens (capsular polysaccharides) found in Escherichia coli. J Bacteriol175:3570–3580
    [Google Scholar]
  43. Rotter C., Muhlbacher S., Salamon D., Schmitt R., Scharf B.. 2006; Rem, a new transcriptional activator of motility and chemotaxis in Sinorhizobium meliloti. J Bacteriol188:6932–6942
    [Google Scholar]
  44. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  45. Sharypova L. A., Niehaus K., Scheidle H., Holst O., Becker A.. 2003; Sinorhizobium meliloti acpXL mutant lacks the C28 hydroxylated fatty acid moiety of lipid A and does not express a slow migrating form of lipopolysaccharide. J Biol Chem278:12946–12954
    [Google Scholar]
  46. Simon R., Priefer U., Puhler A.. 1983; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Biotechnology1:784–791
    [Google Scholar]
  47. Tang X., Lu B. F., Pan S. Q.. 1999; A bifunctional transposon mini-Tn 5-gfp-km which can be used to select for promoter fusions and report gene expression levels in Agrobacterium tumefaciens. FEMS Microbiol Lett179:37–42
    [Google Scholar]
  48. Thompson J. D., Higgins D. G., Gibson T. J.. 1994; clustal w – improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res22:4673–4680
    [Google Scholar]
  49. Vedam V., Kannenberg E. L., Haynes J. G., Sherrier D. J., Datta A., Carlson R. W.. 2003; A Rhizobium leguminosarum AcpXL mutant produces lipopolysaccharide lacking 27-hydroxyoctacosanoic acid. J Bacteriol185:1841–1850
    [Google Scholar]
  50. Vedam V., Kannenberg E., Datta A., Brown D., Haynes-Gann J. G., Sherrier D. J., Carlson R. W.. 2006; The pea nodule environment restores the ability of a Rhizobium leguminosarum lipopolysaccharide acpXL mutant to add 27-hydroxyoctacosanoic acid to its lipid A. J Bacteriol188:2126–2133
    [Google Scholar]
  51. Vincent V. M.. 1970; A Manual for the Practical Study of Root-Nodule Bacteria (IBP Handbook no. 15) Oxford, UK: Blackwell;
    [Google Scholar]
  52. Vriezen J. A. C., de Bruijn F. J., Nusslein K.. 2007; Responses of rhizobia to desiccation in relation to osmotic stress, oxygen, and temperature. Appl Environ Microbiol73:3451–3459
    [Google Scholar]
  53. Westphal O., Jann K.. 1965; Bacterial lipopolysaccharides. Methods Carbohydr Chem5:83–91
    [Google Scholar]
  54. York W. S., Darvill A. G., McNeil M., Stevenson T. T., Albersheim P.. 1985; Isolation and characterization of plant cell walls and cell wall components. Methods Enzymol118:3–40
    [Google Scholar]
  55. Yost C. K., Rochepeau P., Hynes M. F.. 1998; Rhizobium leguminosarum contains a group of genes that appear to code for methyl-accepting chemotaxis proteins. Microbiology144:1945–1956
    [Google Scholar]
  56. Yost C. K., Del Bel K. L., Quandt J., Hynes M. F.. 2004; Rhizobium leguminosarum methyl-accepting chemotaxis protein genes are down-regulated in the pea nodule. Arch Microbiol182:505–513
    [Google Scholar]
  57. Zevenhuizen L.. 1984; Gel-forming capsular polysaccharide of fast-growing rhizobia: occurrence and rheological properties. Appl Microbiol Biotechnol20:393–399
    [Google Scholar]
  58. Zevenhuizen L. P., van Veldhuizen A., Fokkens R. H.. 1990; Re-examination of cellular cyclic beta-1,2-glucans of Rhizobiaceae: distribution of ring sizes and degrees of glycerol-1-phosphate substitution. Antonie Van Leeuwenhoek57:173–178
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.025031-0
Loading
/content/journal/micro/10.1099/mic.0.025031-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error