1887

Abstract

Methylation of a base in a specific DNA sequence protects the DNA from nucleolytic cleavage by restriction enzymes recognizing the same sequence. The MboII restriction–modification (R–M) system of ATCC 10900 consists of a restriction endonuclease gene and two methyltransferase genes. The enzymes encoded by this system recognize an asymmetrical sequence 5′-GAAGA-3′/3′-CTTCT-5′. M1.MboII modifies the last adenine in the recognition sequence 5′-GAAGA-3′ to -methyladenine. A second methylase, M2.MboII, was cloned and purified to electrophoretic homogeneity using a four-step chromatographic procedure. It was demonstrated that M2.MboII modifies the internal cytosine in the recognition sequence 3′-CTTCT-5′, yielding -methylcytosine, and moreover is able to methylate single-stranded DNA. The protein exists in solution as a monomer of molecular mass 30 000±1000 Da under denaturing conditions. Divalent cations (Ca, Mg, Mn and Zn) inhibit M2.MboII methylation activity. It was found that the isomethylomer M2.NcuI from ATCC 14688 behaves in the same manner. Functional analysis showed that the complete MboII R–M system, consisting of two methyltransferases genes and the gene, is the most stable and the least harmful to bacterial cells.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.025023-0
2009-04-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/4/1111.html?itemId=/content/journal/micro/10.1099/mic.0.025023-0&mimeType=html&fmt=ahah

References

  1. Ando T., Xu Q., Torres M., Kusugami K., Israel D. A., Blaser M. J. 2000; Restriction-modification system differences in Helicobacter pylori are a barrier to interstrain plasmid transfer. Mol Microbiol 37:1052–1065
    [Google Scholar]
  2. Bheemanaik S., Reddy Y. V. R., Rao D. N. 2006; Structure, function and mechanism of exocyclic DNA methyltransferases. Biochem J 399:177–190
    [Google Scholar]
  3. Bickle T. A., Kruger D. H. 1993; Biology of DNA restriction. Microbiol Rev 57:434–450
    [Google Scholar]
  4. Bocklage H., Heeger K., Muller-Hill B. 1991; Cloning and characterization of the MboII restriction-modification system. Nucleic Acids Res 19:1007–1013
    [Google Scholar]
  5. Bolivar F., Rodriguez R. L., Betlach M. C., Boyer H. W. 1977; Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene 2:95–113
    [Google Scholar]
  6. Bøvre K. 1984; Genus II. Moraxella Lwoff 1939, 173 emend. Henriksen and Bovre 1968, 391AL . In Bergey's Manual of Systematic Bacteriology vol. 1 pp 296–303 Edited by Krieg N. R., Holt J. B. Baltimore, MD: Williams & Wilkins;
    [Google Scholar]
  7. Bradford M. M. 1976; A rapid and sensitive method for quantitation of microgram quantities of proteins utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
    [Google Scholar]
  8. Brown N. L., Hutchison C. A. III, Smith M. 1980; The specific non-symmetrical sequence recognized by restriction endonuclease MboII. J Mol Biol 140:143–148
    [Google Scholar]
  9. Bujnicki J. M., Radlinska M. 1999; Molecular evolution of DNA-(cytosine- N 4) methyltransferases: evidence for their polyphyletic origin. Nucleic Acids Res 27:4501–4509
    [Google Scholar]
  10. Cerritelli S., Springhorn S. S., Lacks S. A. 1989; DpnA, a methylase for single-strand DNA in the DpnII restriction system and its biological function. Proc Natl Acad Sci U S A 86:9223–9227
    [Google Scholar]
  11. Dubey A. K., Mollet B., Roberts R. J. 1992; Purification and characterization of the MspI DNA methyltransferase cloned and overexpressed in E. coli . Nucleic Acids Res 20:1579–1585
    [Google Scholar]
  12. Furmanek B., Gromek K., Sektas M., Kaczorowski T. 2001; Isolation and characterization of type IIS restriction endonuclease from Neisseria cuniculi ATCC14688. FEMS Microbiol Lett 196:171–176
    [Google Scholar]
  13. Furmanek B., Sektas M., Wons E., Kaczorowski T. 2007; Molecular characterization of the DNA methyltransferase M1.NcuI from Neisseria cuniculi ATCC 14688. Res Microbiol 158:164–174
    [Google Scholar]
  14. Hasan N., Kur J., Szybalski W. 1989; An Mbo II /Fok I trimming plasmid allowing consecutive cycles of precise 1- to 12-base pair deletions in cloned DNA. Gene 82:305–311
    [Google Scholar]
  15. Jeltsch A. 2002; Beyond Watson and Crick: DNA methylation and molecular enzymology of DNA methyltransferases. ChemBioChem 3:274–293
    [Google Scholar]
  16. Johnsborg O., Eldholm V., Havarstein L. S. 2007; Natural genetic transformation: prevalence, mechanisms and function. Res Microbiol 158:767–778
    [Google Scholar]
  17. Kaczorowski T., Sektas M., Skowron P., Podhajska A. 1999; The FokI methyltransferase from Flavobacterium okeanokoites : purification and characterization of the enzyme and its truncated derivatives. Mol Biotechnol 13:1–15
    [Google Scholar]
  18. Kakuda T., Sarataphan N., Tanaka T., Takai S. 2006; Filamentous-haemagglutinin-like protein genes encoded on a plasmid of Moraxella bovis . Vet Microbiol 118:141–147
    [Google Scholar]
  19. Kriukiene E., Lubiene J., Lagunavicius A., Lubys A. 2005; MnlI – the member of H-N-H subtype of Type IIS restriction endonucleases. Biochim Biophys Acta 1751194–204
    [Google Scholar]
  20. Lin L. F., Posfai J., Roberts R. J., Kong H. 2001; Comparative genomics of the restriction-modification systems in Helicobacter pylori . Proc Natl Acad Sci U S A 98:2740–2745
    [Google Scholar]
  21. Linn T., St Pierre R. 1990; Improved vector system for constructing transcriptional fusions that ensures independent translation of lacZ . J Bacteriol 172:1077–1084
    [Google Scholar]
  22. Lusk J. E., Williams J. P., Kennedy E. P. 1968; Magnesium and the growth of Escherichia coli . J Biol Chem 243:2618–2624
    [Google Scholar]
  23. Malone T., Blumenthal R. M., Cheng X. 1995; Structure-guided analysis reveals nine sequence motifs conserved among DNA amino-methyl-transferases, and suggests a catalytic mechanism for these enzymes. J Mol Biol 253:618–632
    [Google Scholar]
  24. McClelland M., Nelson M., Cantor C. R. 1985; Purification of MboII methylase (GAAGmA) from Moraxella bovis : site specific cleavage of DNA at nine and ten base pair sequences. Nucleic Acids Res 13:7171–7182
    [Google Scholar]
  25. McKane M., Milkman R. 1995; Transduction, restriction and recombination patterns in Escherichia coli . Genetics 139:35–43
    [Google Scholar]
  26. Merkiene E., Vilkaitis G., Klimasuskas S. 1998; A pair of single-strand and double strand DNA cytosine- N 4 methyltransferases from Bacillus centrosporus . Biol Chem 379:569–571
    [Google Scholar]
  27. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  28. Nagornykh M. O., Bogdanova E. S., Protsenko A. S., Solonin A. S., Zakharova M. V., Severinov K. V. 2008; Regulation of gene expression in a type II restriction-modification system. Genetika 44:606–615
    [Google Scholar]
  29. Posfai G., Szybalski W. 1988; A simple method for locating methylated bases in DNA using class-IIS restriction enzymes. Gene 74:179–181
    [Google Scholar]
  30. Raleigh E. A., Murray N. E., Revel H., Blumenthal R. M., Westaway D., Reith A. D., Rigby P. W. J., Elhai J., Hanahan D. 1988; McrA and McrB restriction phenotypes of some E. coli strains and implications for gene cloning. Nucleic Acids Res 16:1563–1575
    [Google Scholar]
  31. Roberts R. J., Belfort M., Bestor T., Bhagwat A. S., Bickle T. A., Bitinaite J., Blumenthal R. M., Degtyarev S. K., Dryden D. T. F. other authors 2003; A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes. Nucleic Acids Res 31:1805–1812
    [Google Scholar]
  32. Roberts R. J., Vincze T., Posfai J., Macelis D. 2007; REBASE – enzymes and genes for DNA restriction and modification. Nucleic Acids Res 35:D269–D270
    [Google Scholar]
  33. Sektas M., Kaczorowski T., Podhajska A. 1992; Purification and properties of the MboII, a class-IIS restriction endonuclease. Nucleic Acids Res 20:433–438
    [Google Scholar]
  34. Sugisaki H., Yamamoto K., Takanami M. 1991; The HgaI restriction-modification system contains two cytosine methylase genes responsible for modification of different DNA strands. J Biol Chem 266:13952–13957
    [Google Scholar]
  35. Thomas C. B., Gumport R. I. 2006; Dimerization of the bacterial RsrI N 6-adenine DNA methyltransferase. Nucleic Acids Res 34:806–815
    [Google Scholar]
  36. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680
    [Google Scholar]
  37. Vilkaitis G., Lubys A., Merkiene E., Timinskas A., Janulaitis A., Klimasauskas S. 2002; Circular permutation of DNA cytosine- N 4 methyltransferases: in vivo coexistence in the BcnI system and in vitro probing by hybrid formation. Nucleic Acids Res 30:1547–1557
    [Google Scholar]
  38. Vitkute J., Stankevicius K., Tamulaitiene G., Maneliene Z., Timinskas A., Berg D. E., Janulaitis A. 2001; Specificities of eleven different DNA methyltransferases of Helicobacter pylori strain 26695. J Bacteriol 183:443–450
    [Google Scholar]
  39. Wilson G. G., Murray N. E. 1991; Restriction and modification systems. Annu Rev Genet 25:585–627
    [Google Scholar]
  40. Xu Q., Morgan R. D., Roberts R. J., Blaser M. J. 2000; Identification of the II restriction and modification systems in Helicobacter pylori reveals their substantial diversity among strains. Proc Natl Acad Sci U S A 97:9671–9676
    [Google Scholar]
  41. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.025023-0
Loading
/content/journal/micro/10.1099/mic.0.025023-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error