1887

Abstract

While the shotgun proteomics approach is gaining momentum in understanding microbial physiology, it remains limited by the paucity of high-quality genomic data, especially when it comes to poorly characterized newly identified phyla. At the same time, large-scale metagenomic sequencing projects produce datasets representing genomes of a variety of environmental microbes, although with lower sequence coverage and sequence quality. In this work we tested the utility of a metagenomic dataset enriched in sequences of environmental strains of to assess the protein profile of a laboratory-cultivated strain, JLW8, as a proof of principle. We demonstrate that a large portion of the proteome predicted from the metagenomic sequence (approx. 20 %) could be identified with high confidence (three or more peptide sequences), thus gaining insights into the physiology of this bacterium, which represents a new genus within the family .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.024968-0
2009-04-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/4/1103.html?itemId=/content/journal/micro/10.1099/mic.0.024968-0&mimeType=html&fmt=ahah

References

  1. Bosch, G., Skovran, E., Xia, Q., Wang, T., Taub, F., Miller, J. A., Lidstrom, M. E. & Hackett, M. ( 2008; ). Comprehensive proteomics of Methylobacterium extorquens AM1 metabolism under single carbon and non-methylotrophic conditions. Proteomics 8, 3494–3505.[CrossRef]
    [Google Scholar]
  2. Bravo, A. & Mora, J. ( 1988; ). Ammonium assimilation in Rhizobium phaseoli by the glutamine synthetase-glutamate synthase pathway. J Bacteriol 170, 980–984.
    [Google Scholar]
  3. Callister, S. J., McCue, L. A., Turse, J. E., Monroe, M. E., Auberry, K. J., Smith, R. D., Adkins, J. N. & Lipton, M. S. ( 2008; ). Comparative bacterial proteomics: analysis of the core genome concept. PLoS One 3, e1542 [CrossRef]
    [Google Scholar]
  4. Chistoserdova, L., Vorholt, J. A., Thauer, R. K. & Lidstrom, M. E. ( 1998; ). C1 transfer enzymes and coenzymes linking methylotrophic bacteria and methanogenic Archaea. Science 281, 99–102.[CrossRef]
    [Google Scholar]
  5. Chistoserdova, L., Gomelsky, L., Vorholt, J. A., Gomelsky, M., Tsygankov, Y. D., Thauer, R. K. & Lidstrom, M. E. ( 2000; ). Analysis of two formaldehyde oxidation pathways in Methylobacillus flagellatus KT, a ribulose monophosphate cycle methylotroph. Microbiology 146, 233–238.
    [Google Scholar]
  6. Chistoserdova, L., Chen, S.-W., Lapidus, A. & Lidstrom, M. E. ( 2003; ). Methylotrophy in Methylobacterium extorquens AM1 from a genomic point of view. J Bacteriol 185, 2980–2987.[CrossRef]
    [Google Scholar]
  7. Chistoserdova, L., Crowther, G. J., Vorholt, J. A., Skovran, B., Portais, J.-C. & Lidstrom, M. E. ( 2007a.; ). Identification of a fourth formate dehydrogenase in Methylobacterium extorquens AM1 and confirmation of the essential role of formate oxidation in methylotrophy. J Bacteriol 189, 9076–9081.[CrossRef]
    [Google Scholar]
  8. Chistoserdova, L., Lapidus, A., Han, C., Goodwin, L., Saunders, L., Brettin, T., Tapia, R., Gilna, P., Lucas, S. & other authors ( 2007b; ). The genome of Methylobacillus flagellatus, the molecular basis for obligate methylotrophy, and the polyphyletic origin of methylotrophy. J Bacteriol 189, 4020–4027.[CrossRef]
    [Google Scholar]
  9. Denef, V. J., Shah, M. B., Verberkmoes, N. C., Hettich, R. L. & Banfield, J. F. ( 2007; ). Implications of strain- and species-level sequence divergence for community and isolate shotgun proteomic analysis. J Proteome Res 6, 3152–3161.[CrossRef]
    [Google Scholar]
  10. Elias, J. E. & Gygi, S. P. ( 2007; ). Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods 4, 207–214.[CrossRef]
    [Google Scholar]
  11. Frias-Lopez, J., Shi, Y., Tyson, G. W., Coleman, M. L., Schuster, S. C., Chisholm, S. W. & DeLong, E. F. ( 2008; ). Microbial community gene expression in ocean surface waters. Proc Natl Acad Sci U S A 105, 3805–3810.[CrossRef]
    [Google Scholar]
  12. Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M. R., Appel, R. D. & Bairoch, A. ( 2005; ). Protein identification and analysis tools on the ExPASy server. In The Proteomics Protocols Handbook, pp. 571–607. Edited by John M. Walker. Totowa, NJ: Humana Press
  13. Gilbert, J. A., Field, D., Huang, Y., Edwards, R., Li, W., Gilna, P. & Joint, I. ( 2008; ). Detection of large numbers of novel sequences in the metatranscriptomes of complex marine microbial communities. PLoS One 3, e3042 [CrossRef]
    [Google Scholar]
  14. Kalyuzhnaya, M. G., Korotkova, N., Crowther, G. J., Marx, C. J., Lidstrom, M. & Chistoserdova, L. ( 2005; ). Analysis of gene islands involved in methanopterin-linked C1 transfer reactions reveals new functions and provides evolutionary insights. J Bacteriol 187, 4607–4614.[CrossRef]
    [Google Scholar]
  15. Kalyuzhnaya, M. G., Bowerman, S., Lara, J. C., Lidstrom, M. E. & Chistoserdova, L. ( 2006; ). Methylotenera mobilis gen. nov., sp. nov, an obligately methylamine-utilizing bacterium within the family Methylophilaceae. Int J Syst Evol Microbiol 56, 2819–2823.[CrossRef]
    [Google Scholar]
  16. Kalyuzhnaya, M. G., Hristova, K. R., Lidstrom, M. E. & Chistoserdova, L. ( 2008a; ). Characterization of a novel methanol dehydrogenase in representatives of Burkholderiales: implications for environmental detection of methylotrophy and evidence for convergent evolution. J Bacteriol 190, 3817–3823.[CrossRef]
    [Google Scholar]
  17. Kalyuzhnaya, M. G., Lapidus, A., Ivanova, N., Copeland, A. C., McHardy, A., Szeto, E., Salamov, A., Grigoriev, I. V., Suciu, D. & other authors ( 2008b; ). High resolution metagenomics targets major functional types in complex microbial communities. Nat Biotechnol 26, 1029–1034.[CrossRef]
    [Google Scholar]
  18. Konstantinidis, K. T. & Tiedje, J. M. ( 2005; ). Towards a genome-based taxonomy for prokaryotes. J Bacteriol 187, 6258–6264.[CrossRef]
    [Google Scholar]
  19. Li, X., Fu, R., Liu, A. & Davidson, V. L. ( 2008; ). Kinetic and physical evidence that the diheme enzyme MauG tightly binds to a biosynthetic precursor of methylamine dehydrogenase with incompletely formed tryptophan tryptophylquinone. Biochemistry 47, 2908–2912.[CrossRef]
    [Google Scholar]
  20. Lidstrom, M. E. ( 2006; ). Aerobic methylotrophic prokaryotes. In The Prokaryotes. Edited by A. Balows, H. G. Truper, M. Dworkin, W. Harder & K.-H. Schleifer. New York: Springer.
  21. Murrell, J. C. & Dalton, H. ( 1983; ). Purification and properties of glutamine synthetase from Methylococcus capsulatus (Bath). J Gen Microbiol 129, 1187–1196.
    [Google Scholar]
  22. Ram, R. J., Verberkmoes, N. C., Thelen, M. P., Tyson, G. W., Baker, B. J., Blake, R. C., II, Shah, M., Hettich, R. L. & Banfield, J. F. ( 2005; ). Community proteomics of a natural microbial biofilm. Science 308, 1915–1920.[CrossRef]
    [Google Scholar]
  23. Rappé, M. S. & Giovannoni, S. J. ( 2003; ). The uncultured microbial majority. Annu Rev Microbiol 57, 369–394.[CrossRef]
    [Google Scholar]
  24. Rusch, D. B., Halpern, A. L., Sutton, G., Heidelberg, K. B., Williamson, S., Yooseph, S., Wu, D., Eisen, J. A., Hoffman, J. M. & other authors ( 2007; ). The Sorcerer II Global Ocean Sampling Expedition: Northwest Atlantic through Eastern Tropical Pacific. PLoS Biol 5, e77 [CrossRef]
    [Google Scholar]
  25. Tringe, S. G., von Mering, C., Kobayashi, A., Salamov, A. A., Chen, A., Chang, H. W., Podar, M., Short, J. M., Mathur, A. J. & other authors ( 2005; ). Comparative metagenomics of microbial communities. Science 308, 554–557.[CrossRef]
    [Google Scholar]
  26. van der Palen, C. J., Reijnders, W. N., de Vries, S., Duine, J. A. & Spaning, R. J. ( 1997; ). MauE and MauD proteins are essential in methylamine metabolism of Paracoccus denitrificans. Antonie Van Leeuwenhoek 72, 219–228.[CrossRef]
    [Google Scholar]
  27. Vorholt, J. A., Marx, C. J., Lidstrom, M. E. & Thauer, R. K. ( 2000; ). Novel formaldehyde-activating enzyme in Methylobacterium extorquens AM1 required for growth on methanol. J Bacteriol 182, 6645–6650.[CrossRef]
    [Google Scholar]
  28. Wilson, S. M., Gleisten, M. P. & Donohue, T. J. ( 2008; ). Identification of proteins involved in formaldehyde metabolism by Rhodobacter sphaeroides. Microbiology 154, 296–305.[CrossRef]
    [Google Scholar]
  29. Xia, Q., Wang, T., Taub, F., Park, Y., Capestany, C. A., Lamont, R. J. & Hackett, M. ( 2007a; ). Quantitative proteomics of intracellular Porphyromonas gingivalis. Proteomics 7, 4323–4337.[CrossRef]
    [Google Scholar]
  30. Xia, Q., Wang, T., Park, Y., Lamont, R. J. & Hackett, M. ( 2007b; ). Differential quantitative proteomics of Porphyromonas gingivalis by linear ion trap mass spectrometry: non-label methods comparison, q-values and LOWESS curve fitting. Int J Mass Spectrom 259, 105–116.[CrossRef]
    [Google Scholar]
  31. Yarrison, G., Young, D. W. & Choules, G. L. ( 1972; ). Glutamate dehydrogenase from Mycoplasma laidlawii. J Bacteriol 110, 494–503.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.024968-0
Loading
/content/journal/micro/10.1099/mic.0.024968-0
Loading

Data & Media loading...

Supplements

vol. , part 4, pp. 1103 - 1110

[ PDF, 653 kb] This table contains the most biologically relevant information for all entries in the metagenomic database that yielded high scoring matches with experimentally observed proteolytic fragments from .



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error