Bacterial variation, virulence and vaccines Free

Abstract

Research into , a commensal and pathogen of humans, has resulted in major scientific contributions to biology. The first endonucleases (restriction enzymes), which paved the way for the new genetics, and the DNA used to obtain the first complete genome sequence of a free-living organism were obtained from . Prevention of invasive bacterial infections of infants, such as meningitis, has been achieved using a novel class of vaccines, of which the glycoconjugates of were the first to be licensed. Originally fallaciously proposed to be the aetiological agent of epidemic influenza, now known to be caused by a virus, is a pathogen of global public health importance. Research into the pathogenesis of the infections it causes (for example, meningitis, septicaemia, pneumonia and otitis media) are case studies in understanding the molecular basis of the variation in gene expression and gene sequences that are critical to its commensal and virulence behaviour and for the strategies that can be pursued to prevent diseases through vaccines.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.024877-0
2009-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/4/997.html?itemId=/content/journal/micro/10.1099/mic.0.024877-0&mimeType=html&fmt=ahah

References

  1. Alexander H. E., Leidy G. 1953; Induction of streptomycin resistance in sensitive Haemophilus influenzae by extracts containing desoxyribonucleic acid from resistant Haemophilus influenzae . J Exp Med 97:17–31
    [Google Scholar]
  2. Bouchet V., Hood D. W., Li J., Brisson J. R., Randle G A., Martin A., Li Z., Goldstein R., Schweda E. K. other authors 2003; Host-derived sialic acid is incorporated into Haemophilus influenzae lipopolysaccharide and is a major virulence factor in experimental otitis media. Proc Natl Acad Sci U S A 100:8898–8903
    [Google Scholar]
  3. Carithers H. A. 1974; The first use of an antibiotic in America. Am J Dis Child 128:207–211
    [Google Scholar]
  4. Cody A. J., Field D., Feil E. J., Stringer S., Deadman M. E., Tsolaki A. G., Gratz B., Bouchet V., Goldstein R. other authors 2003; High rates of recombination in otitis media isolates of non-typeable Haemophilus influenzae . Infect Genet Evol 3:57–66
    [Google Scholar]
  5. Dawid S., Barenkamp S. J., St Geme J. W. 3rd (1999; Variation in expression of the Haemophilus influenzae HMW adhesins: a prokaryotic system reminiscent of eukaryotes. Proc Natl Acad Sci U S A 96:1077–1082
    [Google Scholar]
  6. Figueira M. A., Ram S., Goldstein R., Hood D. W., Moxon E. R., Pelton S. I. 2007; Role of complement in defense of the middle ear revealed by restoring the virulence of nontypeable Haemophilus influenzae siaB mutants. Infect Immun 75:325–333
    [Google Scholar]
  7. Fleischmann R. D., Adams M. D., White O., Clayton R. A., Kirkness E. F., Kerlavage A. R., Bult C. J., Tomb J. F., Dougherty B. A. other authors 1995; Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512
    [Google Scholar]
  8. Fox K. L., Cox A. D., Gilbert M., Wakarchuk W. W., Li J., Makepeace K., Richards J. C., Moxon E. R., Hood D. W. 2006; Identification of a bifunctional lipopolysaccharide sialyltransferase in Haemophilus influenzae : incorporation of disialic acid. J Biol Chem 281:40024–40032
    [Google Scholar]
  9. Hayes W. 1966; Genetic transformation: a retrospective appreciation. J Gen Microbiol 45:385–397
    [Google Scholar]
  10. Hood D., Moxon E. R. 2002; Gene variation and gene regulation in bacterial pathogenesis. In Signals, Switches, Regulons and Cascades: Control of Bacterial Gene Expression pp 19–40 Edited by Hodgson D. A., Thomas C. M. Cambridge: Cambridge University Press;
    [Google Scholar]
  11. Hood D. W., Deadman M. E., Allen T., Masoud H., Martin A., Brisson J. R., Fleischmann R., Venter J. C., Richards J. C., Moxon E. R. 1996a; Use of the complete genome sequence information of Haemophilus influenzae strain Rd to investigate lipopolysaccharide biosynthesis. Mol Microbiol 22:951–965
    [Google Scholar]
  12. Hood D. W., Deadman M. E., Jennings M. P., Bisercic M., Fleischmann R. D., Venter J. C., Moxon E. R. 1996b; DNA repeats identify novel virulence genes in Haemophilus influenzae . Proc Natl Acad Sci U S A 93:11121–11125
    [Google Scholar]
  13. Hood D. W., Makepeace K., Deadman M. E., Rest R. F., Thibault P., Martin A., Richards J. C., Moxon E. R. 1999; Sialic acid in the lipopolysaccharide of Haemophilus influenzae : strain distribution, influence on serum resistance and structural characterization. Mol Microbiol 33:679–692
    [Google Scholar]
  14. Hood D. W., Cox A. D., Gilbert M., Makepeace K., Walsh S., Deadman M. E., Cody A., Martin A., Månsson M. other authors 2001; Identification of a lipopolysaccharide alpha-2,3-sialyltransferase from Haemophilus influenzae . Mol Microbiol 39:341–350
    [Google Scholar]
  15. Johnston J. W., Zaleski A., Allen S., Mootz J. M., Armbruster D., Gibson B. W., Apicella M. A., Munson R. S. Jr 2007; Regulation of sialic acid transport and catabolism in Haemophilus influenzae . Mol Microbiol 66:26–39
    [Google Scholar]
  16. Jones P. A., Samuels N. M., Phillips N. J., Munson R. S. Jr, Bozue J. A., Arseneau J. A., Nichols W. A., Zaleski A., Gibson B. W., Apicella M. A. 2002; Haemophilus influenzae type b strain A2 has multiple sialyltransferases involved in lipooligosaccharide sialylation. J Biol Chem 277:14598–14611
    [Google Scholar]
  17. McCarty M. 1985 The Transforming Principle: Discovering that Genes are Made of DNA New York: W. W. Norton & Co;
  18. Meats E., Feil E. J., Stringer S., Cody A. J., Goldstein R., Kroll J. S., Popovic T., Spratt B. G. 2003; Characterization of encapsulated and noncapsulated Haemophilus influenzae and determination of phylogenetic relationships by multilocus sequence typing. J Clin Microbiol 41:1623–1636
    [Google Scholar]
  19. Medini D., Donati C., Tettelin H., Masignani V., Rappuoli R. 2005; The microbial pan-genome. Curr Opin Genet Dev 15:589–594
    [Google Scholar]
  20. Mohd-Zain Z., Turner S. L., Cerdeno-Tarraga A. M., Lilley A. K., Inzana T. J., Duncan A. J., Harding R. M., Hood D. W., Peto T. E., Crook D. W. 2004; Transferable antibiotic resistance elements in Haemophilus influenzae share a common evolutionary origin with a diverse family of syntenic genomic islands. J Bacteriol 186:8114–8122
    [Google Scholar]
  21. Moxon E. R., Murphy T. F. 2000; Haemophilus influenzae . In Mandell, Douglas and Bennett's Principles and Practice of Infectious Diseases , 5th edn. pp 2369–2378 Edited by Mandell G. L., Bennett J. E., Dolin R. Philadelphia, PA: Churchill Livingstone;
    [Google Scholar]
  22. Moxon E. R., Vaughn K. 1981; The tybe b capsular polysaccharide as a virulence determinant of Haemophilus influenzae : studies using clinical isolates and laboratory transformants. J Infect Dis 143:517–524
    [Google Scholar]
  23. Moxon E. R., Rainey P. B., Nowak M. A., Lenski R. E. 1994; Adaptive evolution of highly mutable loci in pathogenic bacteria. Curr Biol 4:24–33
    [Google Scholar]
  24. Murphy T. F. 2003; Respiratory infections caused by non-typeable Haemophilus influenzae . Curr Opin Infect Dis 16:129–134
    [Google Scholar]
  25. Musser J. M., Kroll J. S., Moxon E. R., Selander R. K. 1988; Clonal population structure of encapsulated Haemophilus influenzae . Infect Immun 56:1837–1845
    [Google Scholar]
  26. Randle G. A., Hood D. W., Makepeace K., Moxon E. R. 2005 The role of sialic acid in the pathogenesis of Haemophilus influenzae . Abstract A63, ASM Pasteurellaceae 2005 Meeting Hawaii, USA:
    [Google Scholar]
  27. Schweda E. K., Richards J. C., Hood D. W., Moxon E. R. 2007; Expression and structural diversity of the lipopolysaccharide of Haemophilus influenzae : implication in virulence. Int J Med Microbiol 297:297–306
    [Google Scholar]
  28. Severi E., Randle G., Kivlin P., Whitfield K., Young R., Moxon R., Kelly D., Hood D., Thomas G. H. 2005; Sialic acid transport in Haemophilus influenzae is essential for lipopolysaccharide sialylation and serum resistance and is dependent on a novel tripartite ATP-independent periplasmic transporter. Mol Microbiol 58:1173–1185
    [Google Scholar]
  29. Severi E., Muller A., Potts J. R., Leech A., Williamson D., Wilson K. S., Thomas G. H. 2008; Sialic acid mutarotation is catalyzed by the Escherichia coli β -propeller protein YjhT. J Biol Chem 283:4841–4849
    [Google Scholar]
  30. Smith W., Andrews C., Laidlaw P. P. 1933; A virus obtained from influenza patients. Lancet ii:66–68
    [Google Scholar]
  31. Srikhanta Y. N., Maguire T. L., Stacey K. J., Grimmond S. M., Jennings M. P. 2005; The phasevarion: a genetic system controlling coordinated, random switching of expression of multiple genes. Proc Natl Acad Sci U S A 102:5547–5551
    [Google Scholar]
  32. van Ham S. M., van Alphen L., Mooi F. R., van Putten J. P. 1993; Phase variation of H. influenzae fimbriae: transcriptional control of two divergent genes through a variable combined promoter region. Cell 73:1187–1196
    [Google Scholar]
  33. Vimr E., Lichtensteiger C., Steenbergen S. 2000; Sialic acid metabolism's dual function in Haemophilus influenzae . Mol Microbiol 36:1113–1123
    [Google Scholar]
  34. Williams P. 2007; Quorum sensing, communication and cross-kingdom signalling in the bacterial world. Microbiology 153:3923–3938
    [Google Scholar]
  35. Zwahlen A., Kroll J. S., Rubin L. G., Moxon E. R. 1989; The molecular basis of pathogenicity in Haemophilus influenzae : comparative virulence of genetically-related capsular transformants and correlation with changes at the capsulation locus cap. Microb Pathog 7:225–235
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.024877-0
Loading
/content/journal/micro/10.1099/mic.0.024877-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed