1887

Abstract

Patulin is an acetate-derived tetraketide mycotoxin produced by several fungal species, especially , and species. The health risks due to patulin consumption by humans have led many countries to regulate it in human food. Previous studies have shown the involvement of cytochrome P450 monooxygenases in the hydroxylation of two precursors of patulin, -cresol and -hydroxybenzylalcohol. In the present study, two cytochrome P450 genes were identified in the genome sequence of , a patulin-producing species. Both mRNAs were strongly co-expressed during patulin production. CYP619C2, encoded by the first gene, consists of 529 aa, while the second cytochrome, CYP619C3, consists of 524 aa. The coding sequences were used to perform the heterologous expression of functional enzymes in . The bioconversion assays showed that CYP619C3 catalysed the hydroxylation of -cresol to yield -hydroxybenzyl alcohol. CYP619C2 catalysed the hydroxylation of -hydroxybenzyl alcohol and -cresol to gentisyl alcohol and 2,5-dihydroxytoluene (toluquinol), respectively. Except for the last compound, all enzyme products are known precursors of patulin. Taken together, these data strongly suggest the involvement of CYP619C2 and CYP619C3 in the biosynthesis of patulin. CYP619C2 and CYP619C3 are located near to two other genes involved in patulin biosynthesis, namely the 6-methylsalicylic acid synthase () and isoepoxydon dehydrogenase () genes. The current data associated with an analysis of the sequence of suggest the presence of a cluster of 15 genes involved in patulin biosynthesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.024836-0
2009-05-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/5/1738.html?itemId=/content/journal/micro/10.1099/mic.0.024836-0&mimeType=html&fmt=ahah

References

  1. Abo-Dahab N. F., Paterson R. R., Razak A. A. 1996; Effect of fungistatic agent 2-deoxy-d-glucose on mycotoxins from Penicillium expansum . Lett Appl Microbiol 23:171–173
    [Google Scholar]
  2. Alfaro C., Urios A., González M. C., Moya P., Blanco M. 2003; Screening for metabolites from Penicillium novae-zeelandiae displaying radical-scavenging activity and oxidative mutagenicity: isolation of gentisyl alcohol. Mutat Res 539:187–194
    [Google Scholar]
  3. Beck J., Ripka S., Siegner A., Schiltz E., Schweizer E. 1990; The multifunctional 6-methylsalicylic acid synthase gene of Penicillium patulum . Its gene structure relative to that of other polyketide synthases. Eur J Biochem 192:487–498
    [Google Scholar]
  4. Birkinshaw J. H., Bracken A., Raistrick H. 1943; Studies in the biochemistry of micro-organisms: 72. Gentisyl alcohol (2: 5-dihydroxybenzyl alcohol), a metabolic product of Penicillium patulum Bainier. Biochem J 37:726–728
    [Google Scholar]
  5. Chung W. G., Sen A., Wang-Buhler J. L., Yang Y. H., Lopez N., Merrill G. F., Miranda C. L., Hu C. H., Buhler D. R. 2004; cDNA-directed expression of a functional zebrafish CYP1A in yeast. Aquat Toxicol 70:111–121
    [Google Scholar]
  6. Dombrink-Kurtzman M. A. 2007; The sequence of the isoepoxydon dehydrogenase gene of the patulin biosynthetic pathway in Penicillium species. Antonie Van Leeuwenhoek 91:179–189
    [Google Scholar]
  7. Dombrink-Kurtzman M. A. 2008; A gene having sequence homology to isoamyl alcohol oxidase is transcribed during patulin production in Penicillium griseofulvum . Curr Microbiol 56:224–228
    [Google Scholar]
  8. Fedeshko R. W. 1992; Polyketide enzymes and genes in Penicillium urticae . PhD thesis University of Calgary; Calgary, AB, Canada:
  9. Fedorova N. D., Khaldi N., Joardar V. S., Maiti R., Amedeo P., Anderson M. J., Crabtree J., Silva J. C., Badger J. H. other authors 2008; Genomic islands in the pathogenic filamentous fungus Aspergillus fumigatus . PLoS Genet 4:e1000046
    [Google Scholar]
  10. Forrester P. I., Gaucher G. M. 1972; Conversion of 6-methylsalicylic acid into patulin by Penicillium urticae . Biochemistry 11:1102–1107
    [Google Scholar]
  11. Frisvad J. C., Smedsgaard J., Larsen T. O., Samson R. A. 2004; Mycotoxins, drugs and other extrolites produced by species in Penicillium subgenus Penicillium . Stud Mycol 49:201–241
    [Google Scholar]
  12. Houbraken J., Samson R. A., Frisvad J. C. 2006; Byssochlamys : significance of heat resistance and mycotoxin production. Adv Exp Med Biol 571:211–224
    [Google Scholar]
  13. Iijima H., Ebizuka Y., Sankawa U. 1986; Biosynthesis of patulin; in vitro conversion of gentisyl alcohol into patulin by microsomal enzyme(s) and retention of one of the carbinol protons in this reaction. Chem Pharm Bull (Tokyo 34:3534–3537
    [Google Scholar]
  14. Kimura M., Tokai T., Takahashi-Ando N., Ohsato S., Fujimura M. 2007; Molecular and genetic studies of Fusarium trichothecene biosynthesis: pathways, genes, and evolution. Biosci Biotechnol Biochem 71:2105–2123
    [Google Scholar]
  15. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  16. Light R. J. 1969; 6-Methylsalicylic acid decarboxylase from Penicillium patulum . Biochim Biophys Acta 191:430–438
    [Google Scholar]
  17. Liu A., Zhang H. 2006; Transition metal-catalyzed nonoxidative decarboxylation reactions. Biochemistry 45:10407–10411
    [Google Scholar]
  18. Moake M. M., Padilla-Zakour O. I., Worobo R. W. 2005; Comprehensive review of patulin control methods in foods. Comp Rev Food Sci Food Safety 4:8–21
    [Google Scholar]
  19. Murphy G., Lynen F. 1975; Patulin biosynthesis: the metabolism of m -hydroxybenzyl alcohol and m -hydroxybenzaldehyde by particulate preparations from Penicillium patulum . Eur J Biochem 58:467–475
    [Google Scholar]
  20. Murphy G., Vogel G., Krippahl G., Lynen F. 1974; Patulin biosynthesis: the role of mixed-function oxidases in the hydroxylation of m -cresol. Eur J Biochem 49:443–455
    [Google Scholar]
  21. Nelson D. R., Koymans L., Kamataki T., Stegeman J. J., Feyereisen R., Waxman D. J., Waterman M. R., Gotoh O., Coon M. J. other authors 1996; P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics 6:1–42
    [Google Scholar]
  22. Panaccione D. G. 2005; Origins and significance of ergot alkaloid diversity in fungi. FEMS Microbiol Lett 251:9–17
    [Google Scholar]
  23. Peirson S. N., Butler J. N., Foster R. 2003; Experimental validation of novel and conventional approaches to quantitative real-time PCR data analysis. Nucleic Acids Res 31:e73
    [Google Scholar]
  24. Pompon D., Louerat B., Bronine A., Urban P. 1996; Yeast expression of animal and plant P450s in optimized redox environments. Methods Enzymol 272:51–64
    [Google Scholar]
  25. Priest J. W., Light R. J. 1989; Patulin biosynthesis: epoxidation of toluquinol and gentisyl alcohol by particulate preparations from Penicillium patulum . Biochemistry 28:9192–9200
    [Google Scholar]
  26. Proctor R. H., Brown D. W., Plattner R. D., Desjardins A. E. 2003; Co-expression of 15 contiguous genes delineates a fumonisin biosynthetic gene cluster in Gibberella moniliformis . Fungal Genet Biol 38:237–249
    [Google Scholar]
  27. Puel O., Tadrist S., Galtier P., Oswald I. P., Delaforge M. 2005; Byssochlamys nivea as a source of mycophenolic acid. Appl Environ Microbiol 71:550–553
    [Google Scholar]
  28. Puel O., Tadrist S., Delaforge M., Oswald I. P., Lebrihi A. 2007; The inability of Byssochlamys fulva to produce patulin is related to absence of 6-methylsalicylic acid synthase and isoepoxydon dehydrogenase genes. Int J Food Microbiol 115:131–139
    [Google Scholar]
  29. Schaffner W., Weissmann C. 1973; A rapid, sensitive, and specific method for the determination of protein in dilute solution. Anal Biochem 56:502–514
    [Google Scholar]
  30. Scott A. I., Yalpani M. 1967; A mass-spectrometric study of biosynthesis: conversion of deuteron- m -cresol into patulin. Chem Commun (Camb)945–946
    [Google Scholar]
  31. Scott A. I., Zamir L., Phillips G. T., Yalpani M. 1973; The biosynthesis of patulin. Bioorg Chem 2:124–139
    [Google Scholar]
  32. Sekiguchi J., Gaucher G. M. 1977; Conidiogenesis and secondary metabolism in Penicillium urticae . Appl Environ Microbiol 33:147–158
    [Google Scholar]
  33. Sekiguchi J., Gaucher G. M. 1979; Patulin biosynthesis: the metabolism of phyllostine and isoepoxydon by cell-free preparations from Pencillium urticae . Can J Microbiol 25:881–887
    [Google Scholar]
  34. Seo J. A., Proctor R. H., Plattner R. D. 2001; Characterization of four clustered and coregulated genes associated with fumonisin biosynthesis in Fusarium verticillioides . Fungal Genet Biol 34:155–165
    [Google Scholar]
  35. Shen D. K., Noodeh A. D., Kazemi A., Grillot R., Robson G., Brugère J. F. 2004; Characterisation and expression of phospholipases B from the opportunistic fungus Aspergillus fumigatus . FEMS Microbiol Lett 239:87–93
    [Google Scholar]
  36. Varga J., Rigó K., Molnár J., Tóth B., Szencz S., Téren J., Kozakiewicz Z. 2003; Mycotoxin production and evolutionary relationships among species of Aspergillus section Clavati . Antonie Van Leeuwenhoek 83:191–200
    [Google Scholar]
  37. Varga J., Due M., Frisvad J. C., Samson R. A. 2007; Taxonomic revision of Aspergillus section Clavati based on molecular, morphological and physiological data. Stud Mycol 59:89–106
    [Google Scholar]
  38. Wang I. K., Reeves C., Gaucher G. M. 1991; Isolation and sequencing of a genomic DNA clone containing the 3′ terminus of the 6-methylsalicylic acid polyketide synthetase gene of Penicillium urticae . Can J Microbiol 37:86–95
    [Google Scholar]
  39. Werck-Reichhart D., Feyereisen R. 2000; Cytochromes P450: a success story. Genome Biol 1:REVIEWS3003
    [Google Scholar]
  40. White S., O'Callaghan J., Dobson A. D. 2006; Cloning and molecular characterization of Penicillium expansum genes upregulated under conditions permissive for patulin biosynthesis. FEMS Microbiol Lett 255:17–26
    [Google Scholar]
  41. Yu J., Chang P. K., Ehrlich K. C., Cary J. W., Bhatnagar D., Cleveland T. E., Payne G. A., Linz J. E., Woloshuk C. P., Bennett J. W. 2004; Clustered pathway genes in aflatoxin biosynthesis. Appl Environ Microbiol 70:1253–1262
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.024836-0
Loading
/content/journal/micro/10.1099/mic.0.024836-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error