1887

Abstract

Clinical isolates of that hyperproduce a dark-brown pigment are quite often found in the lungs of chronically infected patients, suggesting that they may have an adaptive advantage in chronic infections. We have screened a library of random transposon insertions in . Transposon insertions resulting in the hyperproduction of a dark-brown pigment were found to be located in the gene, which putatively encodes the enzyme homogentisate-1,2-dioxygenase. Complementation studies indicate that disruption is responsible for the hyperproduction of pyomelanin in both laboratory and clinical isolates. A relationship between disruption and adaptation to chronic infection was explored and our results show that the inactivation of produces a slight reduction of killing ability in an acute murine model of lung infection. On the other hand, it also confers decreased clearance and increased persistence in chronic lung infections. Whether pyomelanin production is the cause of the increased adaptation to chronicity or just a side effect of inactivation is a question to be studied in future; however, this adaptation is consistent with the higher resistance to oxidative stress conferred by the pyomelanin pigment. Our results clearly demonstrate that inactivation leads to a better adaptation to chronic infection, and strongly suggest that this mechanism may be exploited in naturally occurring strains.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.024745-0
2009-04-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/4/1050.html?itemId=/content/journal/micro/10.1099/mic.0.024745-0&mimeType=html&fmt=ahah

References

  1. Arias-Barrau, E., Olivera, E. R., Luengo, J. M., Fernandez, C., Galan, B., Garcia, J. L., Diaz, E. & Minambres, B. ( 2004; ). The homogentisate pathway: a central catabolic pathway involved in the degradation of l-phenylalanine, l-tyrosine, and 3-hydroxyphenylacetate in Pseudomonas putida. J Bacteriol 186, 5062–5077.[CrossRef]
    [Google Scholar]
  2. Bodey, G. P., Bolivar, R., Fainstein, V. & Jadeja, L. ( 1983; ). Infections caused by Pseudomonas aeruginosa. Rev Infect Dis 5, 279–313.[CrossRef]
    [Google Scholar]
  3. Choi, J. Y., Sifri, C. D., Goumnerov, B. C., Rahme, L. G., Ausubel, F. M. & Calderwood, S. B. ( 2002; ). Identification of virulence genes in a pathogenic strain of Pseudomonas aeruginosa by representational difference analysis. J Bacteriol 184, 952–961.[CrossRef]
    [Google Scholar]
  4. Coon, S. L., Kotob, S., Jarvis, B. B., Wang, S., Fuqua, W. C. & Weiner, R. M. ( 1994; ). Homogentisic acid is the product of MelA, which mediates melanogenesis in the marine bacterium Shewanella colwelliana D. Appl Environ Microbiol 60, 3006–3010.
    [Google Scholar]
  5. Doring, G., Holder, I. A. & Botzenhardt, K. (editors) ( 1987; ). Basic Research and Clinical Aspects of Pseudomonas aeruginosa. International Symposium, Tübingen, Germany, 1986. Basel: Karger.
  6. Driffield, K., Miller, K., Bostock, J. M., O'Neill, A. J. & Chopra, I. ( 2008; ). Increased mutability of Pseudomonas aeruginosa in biofilms. J Antimicrob Chemother 61, 1053–1056.[CrossRef]
    [Google Scholar]
  7. Ernst, R. K., D'Argenio, D. A., Ichikawa, J. K., Bangera, M. G., Selgrade, S., Burns, J. L., Hiatt, P., McCoy, K., Brittnacher, M., Kas, A. & other authors ( 2003; ). Genome mosaicism is conserved but not unique in Pseudomonas aeruginosa isolates from the airways of young children with cystic fibrosis. Environ Microbiol 5, 1341–1349.[CrossRef]
    [Google Scholar]
  8. Fazal, N. ( 1997; ). The role of reactive oxygen species (ROS) in the effector mechanisms of human antimycobacterial immunity. Biochem Mol Biol Int 43, 399–408.
    [Google Scholar]
  9. Fick, R. B., Jr ( 1993; ). Pathogenesis and disease. In Pseudomonas aeruginosa: the Opportunist. Boca Raton, FL: CRC.
  10. Gilligan, P. H. ( 1991; ). Microbiology of airway disease in patients with cystic fibrosis. Clin Microbiol Rev 4, 35–51.
    [Google Scholar]
  11. Govan, J. R. & Deretic, V. ( 1996; ). Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev 60, 539–574.
    [Google Scholar]
  12. Haussler, S., Ziegler, I., Lottel, A., von Gotz, F., Rohde, M., Wehmhohner, D., Saravanamuthu, S., Tummler, B. & Steinmetz, I. ( 2003; ). Highly adherent small-colony variants of Pseudomonas aeruginosa in cystic fibrosis lung infection. J Med Microbiol 52, 295–301.[CrossRef]
    [Google Scholar]
  13. He, J., Baldini, R. L., Deziel, E., Saucier, M., Zhang, Q., Liberati, N. T., Lee, D., Urbach, J., Goodman, H. M. & Rahme, L. G. ( 2004; ). The broad host range pathogen Pseudomonas aeruginosa strain PA14 carries two pathogenicity islands harboring plant and animal virulence genes. Proc Natl Acad Sci U S A 101, 2530–2535.[CrossRef]
    [Google Scholar]
  14. Hoti, S. L. & Balaraman, K. ( 1993; ). Formation of melanin pigment by a mutant of Bacillus thuringiensis H-14. J Gen Microbiol 139, 2365–2369.[CrossRef]
    [Google Scholar]
  15. Hullo, M. F., Moszer, I., Danchin, A. & Martin-Verstraete, I. ( 2001; ). CotA of Bacillus subtilis is a copper-dependent laccase. J Bacteriol 183, 5426–5430.[CrossRef]
    [Google Scholar]
  16. Ivins, B. E. & Holmes, R. K. ( 1980; ). Isolation and characterization of melanin-producing (mel) mutants of Vibrio cholerae. Infect Immun 27, 721–729.
    [Google Scholar]
  17. Ivins, B. E. & Holmes, R. K. ( 1981; ). Factors affecting phaeomelanin production by a melanin-producing (mel) mutant of Vibrio cholerae. Infect Immun 34, 895–899.
    [Google Scholar]
  18. Jacobs, M. A., Alwood, A., Thaipisuttikul, I., Spencer, D., Haugen, E., Ernst, S., Will, O., Kaul, R., Raymond, C. & other authors ( 2003; ). Comprehensive transposon mutant library of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 100, 14339–14344.[CrossRef]
    [Google Scholar]
  19. Johansen, H. K., Espersen, F., Cryz, S. J., Jr, Hougen, H. P., Fomsgaard, A., Rygaard, J. & Hoiby, N. ( 1994; ). Immunization with Pseudomonas aeruginosa vaccines and adjuvant can modulate the type of inflammatory response subsequent to infection. Infect Immun 62, 3146–3155.
    [Google Scholar]
  20. Konstan, M. W., Hilliard, K. A., Norvell, T. M. & Berger, M. ( 1994; ). Bronchoalveolar lavage findings in cystic fibrosis patients with stable, clinically mild lung disease suggest ongoing infection and inflammation. Am J Respir Crit Care Med 150, 448–454.[CrossRef]
    [Google Scholar]
  21. Kotob, S. I., Coon, S. L., Quintero, E. J. & Weiner, R. M. ( 1995; ). Homogentisic acid is the primary precursor of melanin synthesis in Vibrio cholerae, a Hyphomonas strain, and Shewanella colwelliana. Appl Environ Microbiol 61, 1620–1622.
    [Google Scholar]
  22. Kovach, M. E., Elzer, P. H., Hill, D. S., Robertson, G. T., Farris, M. A., Roop, R. M., II & Peterson, K. M. ( 1995; ). Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166, 175–176.[CrossRef]
    [Google Scholar]
  23. Liberati, N. T., Urbach, J. M., Miyata, S., Lee, D. G., Drenkard, E., Wu, G., Villanueva, J., Wei, T. & Ausubel, F. M. ( 2006; ). An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc Natl Acad Sci U S A 103, 2833–2838.[CrossRef]
    [Google Scholar]
  24. Macia, M. D., Borrell, N., Segura, M., Gomez, C., Perez, J. L. & Oliver, A. ( 2006; ). Efficacy and potential for resistance selection of antipseudomonal treatments in a mouse model of lung infection by hypermutable Pseudomonas aeruginosa. Antimicrob Agents Chemother 50, 975–983.[CrossRef]
    [Google Scholar]
  25. Mena, A., Macia, M. D., Borrell, N., Moya, B., de Francisco, T., Perez, J. L. & Oliver, A. ( 2007; ). Inactivation of the mismatch repair system in Pseudomonas aeruginosa attenuates virulence but favors persistence of oropharyngeal colonization in cystic fibrosis mice. J Bacteriol 189, 3665–3668.[CrossRef]
    [Google Scholar]
  26. Morrison, A. J., Jr & Wenzel, R. P. ( 1984; ). Epidemiology of infections due to Pseudomonas aeruginosa. Rev Infect Dis 6 (Suppl. 3), S627–S642.[CrossRef]
    [Google Scholar]
  27. Mulcahy, H., O'Callaghan, J., O'Grady, E. P., Maciá, M. D., Borrell, N., Gómez, C., Casey, P. G., Hill, C., Adams, C. & other authors ( 2008; ). Pseudomonas aeruginosa RsmA plays an important role during murine infection by influencing colonization, virulence, persistence, and pulmonary inflammation. Infect Immun 76, 632–638.[CrossRef]
    [Google Scholar]
  28. Nosanchuk, J. D. & Casadevall, A. ( 2003; ). The contribution of melanin to microbial pathogenesis. Cell Microbiol 5, 203–223.[CrossRef]
    [Google Scholar]
  29. Nosanchuk, J. D. & Casadevall, A. ( 2006; ). Impact of melanin on microbial virulence and clinical resistance to antimicrobial compounds. Antimicrob Agents Chemother 50, 3519–3528.[CrossRef]
    [Google Scholar]
  30. Oliver, A., Canton, R., Campo, P., Baquero, F. & Blazquez, J. ( 2000; ). High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 288, 1251–1254.[CrossRef]
    [Google Scholar]
  31. Pritt, B., O'Brien, L. & Winn, W. ( 2007; ). Mucoid Pseudomonas in cystic fibrosis. Am J Clin Pathol 128, 32–34.[CrossRef]
    [Google Scholar]
  32. Ruzafa, C., Sanchez-Amat, A. & Solano, F. ( 1995; ). Characterization of the melanogenic system in Vibrio cholerae, ATCC 14035. Pigment Cell Res 8, 147–152.[CrossRef]
    [Google Scholar]
  33. Salgado, A. & Blazquez, J. ( 2006; ). Determination of the structure of a hybrid between 2-(1,4-benzoquinone)acetic acid and a linear peptide by electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom 20, 512–516.[CrossRef]
    [Google Scholar]
  34. Sambrook, J. & Russell, D. W. ( 2001; ). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  35. Smith, E. E., Buckley, D. G., Wu, Z., Saenphimmachak, C., Hoffman, L. R., D'Argenio, D. A., Miller, S. I., Ramsey, B. W., Speert, D. P. & other authors ( 2006; ). Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci U S A 103, 8487–8492.[CrossRef]
    [Google Scholar]
  36. Stover, C. K., Pham, X. Q., Erwin, A. L., Mizoguchi, S. D., Warrener, P., Hickey, M. J., Brinkman, F. S., Hufnagle, W. O., Kowalik, D. J. & other authors ( 2000; ). Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406, 959–964.[CrossRef]
    [Google Scholar]
  37. Yabuuchi, E. & Ohyama, A. ( 1972; ). Characterization of pyomelanin producing strains of Pseudomonas aeruginosa. Int J Syst Bacteriol 22, 53–64.[CrossRef]
    [Google Scholar]
  38. Zhang, C., Huang, M. & Holloway, B. W. ( 1993; ). Mapping of the ben, ant and cat genes of Pseudomonas aeruginosa and evolutionary relationship of the ben region of P. aeruginosa and P. putida. FEMS Microbiol Lett 108, 303–309.[CrossRef]
    [Google Scholar]
  39. Zughaier, S. M., Ryley, H. C. & Jackson, S. K. ( 1999; ). A melanin pigment purified from an epidemic strain of Burkholderia cepacia attenuates monocyte respiratory burst activity by scavenging superoxide anion. Infect Immun 67, 908–913.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.024745-0
Loading
/content/journal/micro/10.1099/mic.0.024745-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error